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ANNOUNCEMENTS



Homework 2 coming

Paper presentations in two weeks
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Paper presentations

Each student picks one paper from the list on the course website

Prepare a 15-minute presentation based on that paper, teaching the
main ideas to the class

Grading will be based on technical correctness, skill at conveying
information, and delivery.
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REVIEW



“First-order” LWR model

Shockwaves and spreading
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TOWARDS
SECOND-ORDER MODELS



Why don’t shocks occur instantaneously?

Drivers have reaction time, and may also anticipate downstream
conditions. Let’s look at these one at a time.
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Diffusion: awareness of downstream conditions

To date, the density at a point has been the sole determinant of the flow
Q(k) and speed u(k). We want to add “look-ahead” behavior.

One way to do this is to say that the flow at a point is given by

q = Q(k)− c20kx

where c20 is a constant and kx = ∂k/∂x gives the (spatial) rate at which
density is changing.

Why c20? As we will see, we can draw analogies with fluid mechanics and
the wave equation, and this is a standard notation.
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q = Q(k)− c20kx

What does this formula predict when kx > 0? Is this logical?

What about when kx < 0?

kx = 0?
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Dividing by k , we obtain a relationship between speed and density:

u = U(k)− c20
kx
k

where U(k) = Q(k)/k is the speed-density relationship based on the
fundamental diagram.

In both this formula and the previous one, Q(k) and U(k) give the “steady-
state” flows and speeds associated with the density k . The actual flow and
speeds q and u have an additional term to reflect drivers looking downstream
and anticipating future conditions.
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To introduce the effect of reaction time, we introduce a time lag into the
speed-density formula:

u(x , t + τ) = U(k(x , t))− c20
kx(x , t)

k(x , t)

where τ is the reaction time.

Taking a linear approximation to the left-hand side, we have

u(x , t + τ) ≈ u(x , t) + τ
du

dt
= U(k(x , t))− c20

kx(x , t)

k(x , t)

or
du

dt
=

1

τ

(
U(k)− u − kx

k

)
omitting the x and t indices for clarity.
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du

dt
=

1

τ

(
U(k)− u − c20

kx
k

)

In this formula, you can interpret [U(k)− kx/k]− u as the difference
between the “desired” and “actual” speed at a point.

As τ decreases, drivers react faster (du/dt grows large.)

As τ increases, drivers react slower. What happens as τ → 0 or τ →∞?
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Keep in mind that this interpretation for du/dt is in terms of a particular
vehicle (which is moving)

How does this relate to the derivatives of u(x , t) at a single point in time
and space?

For a moving vehicle x is a function of t, so we actually have

du(x(t), t)

dt
=

1

τ

(
U(k)− u − c20

kx
k

)

Applying the chain rule, the left-hand side is

du

dx

dx

dt
+

du

dt

or uxu + ut
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This gives the momentum equation

uxu + ut =
1

τ

(
U(k)− u − c20

kx
k

)

The conservation equation still holds true:

kt + qx = 0

The basic LWR model is “first-order” because it only has the conservation
equation. “Second-order” models include the momentum equation as well.

This is called the PW (Payne-Whitham) model, and was developed in the
early 1970s.
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EMPIRICAL SUPPORT



In addition to smoothing shocks, higher-order models can reproduce other
phenomena observed in the field:

Congested traffic exhibits oscillation in speed, rather than smooth flow
(“stop-and-go”)
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Traffic congestion also exhibits hysteresis: the speed-density diagram
seems to be different when flow is recovering from congestion and when
congestion is forming.

This is impossible to recreate with a first-order model, but can
(somewhat) be modeled using the c20kx term.
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RELATIONSHIP WITH
FLUID DYNAMICS



The conservation and momentum equations can easily be cast in terms of
fluid dynamics or kinetic gas theory

uxu + ut =
1

τ

(
U(k)− u − c20

kx
k

)
kt + qx = 0

(Perhaps too easily.)

We’ll survey some of the ways this has been done.
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In kinetic gas theory, atoms are in constant motion and collide with each
other elastically.

Using this theory, one can in fact derive the momentum equation with the
interpretation of u as the average speed and c20 as the variance.

Furthermore, by combining the conservation and momentum equations,
one can derive the wave equation

utt − c20uxx = 0

where c0 can represent the “speed of sound” (the rate at which
disturbances propagate)
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The momentum equation can also be cast as a special case of the
Navier-Stokes equations

uxu + ut =
1

τ

(
U(k)− u − c20

kx
k

)

in which −c20kx/k is interpreted as the “traffic pressure.”

This “traffic pressure” manifests itself as drivers anticipate changes ahead
of them.

Can you see any difficulty with this analogy?

Higher-order models Relationship with Fluid Dynamics



The momentum equation can also be augmented with a viscosity term

uxu + ut =
1

τ

(
U(k)− u − c20

kx
k

)
+

1

k
(µ0ux)x

where µ0 represents the dynamic viscosity associated with shear forces.

Then we can introduce the Reynolds number R = u2f τ
2/µ0 and Froude

number F = (uf /c0)2
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A SOURCE OF
CONTROVERSY



These parallels have proven nearly irresistable, but some researchers
remain unconvinced that these lines of investigation are worthwhile.

Why?

While conservation holds for vehicles, “momentum” and “viscosity”
do not.

Vehicles (hopefully) are not involved in frequent, elastic collisions.

Higher-order models can violate the anisotropic principle.

They are considerably harder to calibrate and solve.
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Daganzo’s Requiem
In 1995, Daganzo published “Requiem for second-order fluid
approximations of traffic flow” in Transportation Research Part B.

He produces a simple example in which vehicles actually have to flow
backwards to satisfy PW.
Subsequently, traffic flow researchers have built better second-order
models to address these criticisms; the debate rages to this day.
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INFORMAL EVALUATIONS



1 How is the pace of the class so far? (SLOW / OK / FAST)

2 What topic is most unclear at this point?

3 What about my teaching is most helpful to you?

4 What can I do better?

5 Any other comments?
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