Steady-state car following and continuum models

CE 391F

March 21, 2013

ANNOUNCEMENTS

- Homework 3 online (due Thursday, April 4)

REVIEW

The basic car following model

$$
\ddot{x}_{f}(t)=\lambda\left(\dot{x}_{\ell}(t-T)-\dot{x}_{f}(t-T)\right)
$$

Local and asymptotic stability

How did λ and T affect these stability values?

What kind of λ values have been observed in experiments?

When we rescaled so the time delay was 1 , where did the extra T factor come from?

$$
\begin{aligned}
& \ddot{x}_{f}(t)=\lambda\left(\dot{x}_{\ell}(t-T)-\dot{x}_{f}(t-T)\right) \\
& \ddot{x}_{f}(t)=\lambda T\left(\dot{x}_{\ell}(t-1)-\dot{x}_{f}(t-1)\right)
\end{aligned}
$$

OUTLINE

(1) Steady-state car-following scenarios
(2) Connections between car-following and continuum models
(3) More advanced car-following models

STEADY-STATE CAR FOLLOWING

Last class, we showed that a change in speed from u_{1} to u_{2} leads to a change in spacing of $\left(u_{2}-u_{1}\right) / \lambda$

Assume that we have a large number of vehicles at uniform spacing, and the lead vehicle changes speed from u_{1} to u_{2}.

If asymptotic stability holds, in the limit all vehicles will change their speed to u_{2}, and change the spacing by $\left(u_{2}-u_{1}\right) / \lambda$

This suggests that a speed-spacing relationship is embedded in the carfollowing equations... at least under steady-state conditions.

Let k_{1} and k_{2} represent the density before and after the speed change.

Then $1 / k_{2}=1 / k_{1}+\left(u_{2}-u_{1}\right) / \lambda$

We need an initial value; say, $u_{1}=0$ and $k=k_{j}$, the jam density.

Then we have $1 / k_{2}=1 / k_{j}+u_{2} / \lambda$, or $u_{2}=\lambda\left(1 / k_{2}-1 / k_{j}\right)$

Therefore, the implied fundamental diagram is $q=u k=\lambda\left(1-k / k_{j}\right)$

What shape does this have?

What is the implied capacity value?

Is this a "reasonable" fundamental diagram?

One key difference between the interpretation of this relationship, and the continuum flow model:
In the first-order continuum flow model, the fundamental diagram held almost everywhere. In car-following, the "fundamental diagram" refers only to steady-state flows which occur in the limit.

OTHER CAR-FOLLOWING MODELS

The basic car-following model $\ddot{x}_{f}(t+T)=\lambda\left(\dot{x}_{\ell}(t)-\dot{x}_{f}(t)\right)$ has been criticized for being too simple:

- The response does not depend on the following distance
- The steady-state fundamental diagram is unrealistic

One strength of car-following models is that they can be made more sophisticated in a behaviorally plausible way.

To incorporate following distance, we can divide the magnitude of the response by the following distance:

$$
\left.\ddot{x}_{(} t+T\right)=\frac{\lambda_{1}}{x_{\ell}(t)-x_{f}(t)}\left(\dot{x}_{\ell}(t)-\dot{x}_{f}(t)\right)
$$

(where λ_{1} is a different scaling constant than λ.)

What is the steady-state flow model corresponding to this equation?

It turns out that this corresponds to the Greenberg model $u=\lambda_{1} \log \left(k_{j} / k\right)$ and $q=\lambda_{1} k \log \left(k_{j} / k\right)$

One drawback of this model is that $u \rightarrow \infty$ as $k \rightarrow 0$ (equivalently, for low density values, $d q / d k \rightarrow \infty)$.

One response: At low densities, car-following models are less appropriate anyway, since spacings are large and vehicle coupling is weak.

Another response: Nevertheless, can we try to patch this model too?

Edie's Model

Edie suggested adding still more terms to the car-following equation, dividing the response by the "time to collision"

$$
\left.\ddot{x}_{(} t+T\right)=\frac{\lambda_{2}}{x_{\ell}(t)-x_{f}(t)} \frac{\dot{x}_{f}(t+T)}{x_{\ell}(t)-x_{f}(t)}\left(\dot{x}_{\ell}(t)-\dot{x}_{f}(t)\right)
$$

or simply

$$
\left.\ddot{x}_{(} t+T\right)=\frac{\lambda_{2} \dot{x}_{f}(t+T)}{\left[x_{\ell}(t)-x_{f}(t)\right]^{2}}\left(\dot{x}_{\ell}(t)-\dot{x}_{f}(t)\right)
$$

What is the steady-state flow model corresponding to this equation?

Can we go the other direction? Is there a car-following model which can replicate the Greenshields fundamental diagram $q=u_{f}\left(k-k^{2} / k_{j}\right)$?

Writing the spacing $S=1 / k$, we have $u=u_{f}\left(1-1 /\left[k_{j} S\right]\right)$.

Derivatizing with respect to t, we get $\dot{u}=\left(u_{f} /\left[k_{j} S^{2}\right]\right) \dot{S}$

So, the car-following version of the Greenshields model is

$$
\left.\ddot{x}_{(} t+T\right)=\frac{u_{f} / k_{j}}{\left[x_{\ell}(t)-x_{f}(t)\right]^{2}}\left(\dot{x}_{\ell}(t)-\dot{x}_{f}(t)\right)
$$

All of the models discussed so far are special cases of the general family of equations

$$
\left.\ddot{x}_{(} t+T\right)=\frac{\lambda \dot{x}_{f}^{m}(t+T)}{\left[x_{\ell}(t)-x_{f}(t)\right]^{k}}\left(\dot{x}_{\ell}(t)-\dot{x}_{f}(t)\right)
$$

where m, k, and λ are nonnegative parameters.

In our basic car-following model we had $m=k=0$.

Setting $m=0, k=1$ gives the Greenberg model.

Setting $m=1, k=2$ gives Edie's model.

Setting $m=0, k=2$ gives the Greenshields model.

Experimental data from the Eisenhower Expy in Chicago suggests $m=0.8, k=2.8$.

Another study on the same freeway suggests $m=1, k=3$.

Experimental data from the Gulf Fwy in Houston suggests $m=0$, $k=3 / 2$.

Can we determine a general form for the fundamental diagram corresponding to this equation?

Rearranging, we have

$$
\frac{\dot{U}}{U^{m}}=\lambda \frac{\dot{S}}{S^{k}}
$$

Integrating with respect to t, the left-hand side either becomes $\log U$ (if $m=1$) or U^{1-m} (neglecting constants, which can be incorporated into λ)

The same holds with the right-hand side, and from here we can repeat as before.

To wrap up, there is a connection between fluid models and steady-state car-following.

Keep in mind the "steady-state" part; first-order fluid models assume instant adjustment to the diagram.

Unlike higher-order fluid models, the car-following models trivially satisfy anisotropy, can be traced to behavioral concepts, and can accommodate driver and vehicle heterogeneity.

