
Basics of cellular automata models

CE 391F

April 2, 2013

Cellular automata



ANNOUNCEMENTS



Homework 3 due Thursday, April 4

Wednesday office hours rescheduled due to CTR symposium: 9:30–11

Cellular automata Announcements



REVIEW



The basic car following model

ẍf (t) = λ(ẋ`(t − T ) − ẋf (t − T ))

Local and asymptotic stability

How did λ and T affect these stability values?

What kind of λ values have been observed in experiments?

Cellular automata Review



How did car-following models correspond to continuum models?

Cellular automata Review



OUTLINE



1 Cellular automata

2 Towards lane-changing models

3 Random number generation?

Cellular automata Outline



CELLULAR AUTOMATA



An alternative to continuous car-following are discrete “cellular automata”
models.

These were developed in the 1990s by physicists, and are the traffic model
used in TRANSIMS.

Cellular automata simplify car-following models in the same way that the
CTM simplifies the LWR model. As we will see shortly, it also provides an
easy avenue for handling lane-changing behavior.

Cellular automata Cellular automata



What is a cellular automaton?

Celluar automata are defined on a discrete grid of cells, at a discrete set of
times.

Each cell exists in one of a finite number of states

Moving from one timestep to the next, the state of each cell is
updated based on the state of nearby cells.

Cellular automata Cellular automata



Cellular automata were developed by John von Neumann and Stanislaw
Ulam in the 1940s, and have been applied to simulate computer processors,
seashell patterns, neurons, fluid dynamics, and many other objectcs.

Cellular automata Cellular automata



Conway’s Game of Life

The “game of life” is the best-known cellular automaton.

Imagine an infinite grid of cells, which exist in one of two possible states:
“alive” or “dead”

Each cell has eight neighbors, and updates occur based on the following
rules:

1 Any live cell with fewer than two live neighbors dies
(under-population)

2 Any live cell with two or three live neighbors stays alive

3 Any live cell with more than three live neighbors dies
(over-population)

4 Any dead cell with exactly three live neighbors becomes alive
(reproduction)

Cellular automata Cellular automata



Using only these simple rules, a huge variety of complex patterns can be
created.

In a similar way, when applied to traffic flow, cellular automata can
replicate complex phenomena with a simple set of rules.

Cellular automata Cellular automata



Kai Nagel pioneered the application of CAs to traffic modeling, largely at
Los Alamos National Laboratory (although this research started earlier, at
the Universität zu Köln).

Cellular automata Cellular automata



For now, consider a one-lane roadway, which is represented with a
one-dimensional line of cells.

These cells are much smaller than the CTM cells — here, a cell can contain
at most one vehicle.

Cellular automata Cellular automata



The state of a cell is either “empty” (if there is no vehicle present), or a
nonnegative integer v expressing the vehicle’s speed (in units of cells per
tick).

Cellular automata Cellular automata



The system is governed by the following rules, all four of which are applied
to each vehicle in the stated order:

Acceleration: If the velocity v is less than vmax , and the distance to
the next car ahead is greater than v + 1, the speed increases by 1.

Car-following: If the distance to the next vehicle is j and j ≤ v , the
speed decreases to j − 1.

Randomization: If the velocity is positive, it decreases by 1 with
probability p

Motion: The vehicle advances v cells.

These steps are performed in parallel for each vehicle.

Cellular automata Cellular automata



Cellular automata Cellular automata



Cellular automata Cellular automata



Cellular automata Cellular automata



Cellular automata Cellular automata



Cellular automata Cellular automata



LANE CHANGING



To accommodate lane changing, we add a second row to the grid. As
before, cells are either empty or contain the velocity of the vehicle in that
cell.

The previous rules are called the “single-lane update rules.”

With lane changing, we allow vehicles to move laterally before applying
the single-lane update rules.

Cellular automata Lane changing



Some questions to consider:

Symmetry: Should the rules for changing from left-to-right be the
same as those for changing right-to-left?

Stochasticity: Is there any randomness involved in the decision to
change lanes?

Anisotropy: Drivers presumably need to look upstream before
deciding whether or not to change lanes. Will this cause problems?

Cellular automata Lane changing



One candidate set of rules... a vehicle changes lanes if all of the following
conditions are satisfied:

1 Distance to next vehicle in current lane is less than l

2 Distance to next vehicle in other lane is greater than lo
3 Distance to previous vehicle in other lane is greater than lo,back

We can construct variations of these rules to describe different scenarios:

Ignore rule 1 for left-to-right move (asymmetry)

In addition to the above, only make the lane change with some
probability (stochasticity)

Set lo,back = 0 (complete anisotropy)

Cellular automata Lane changing



Symmetric rules

Cellular automata Lane changing



Asymmetric rules

Cellular automata Lane changing



Ping-pong Effect

The “ping-pong” effect occurs when a platoon of vehicles continually
switches from one lane to the next.

It can happen with both symmetric and asymmetric lane-switching
behaviors

How can we address this?

Cellular automata Lane changing



IMPLEMENTING
CELLULAR AUTOMATA



Cellular automata models are fairly easy to implement in programming
language (and, with a bit more effort, in a spreadsheet).

Method 1: Explicitly simulate the state of every cell

Method 2: Only keep track of the vehicles, storing the loation and speeds.

What are some advantages and disadvantages of these methods?

Cellular automata Implementing cellular automata



Do you move vehicles all at once, or sequentially?

How do you perform a certain action with some probability?

Cellular automata Implementing cellular automata



RANDOM NUMBER
GENERATION



What does it mean to generate a random number?

Most computers produce pseudorandom numbers: they give the
appearance of randomness, while being generated by a formula.

Cellular automata Random number generation



A few historical options for generating random numbers in scientific
work...

Roll dice, draw cards, cast lots...

Draw balls from a “well-stirred urn”

Table of 40,000 digits “taken at random from census reports”

Atmospheric noise

Cellular automata Random number generation



Middle-square method

Let’s say we want to generate a sequence of random two-digit numbers.

Begin by picking a seed value 1234

The first random number is the middle two digits: 23

Square 23, and pick the middle two digits as the next random number:
232 = 0529

Square 52, and get 2704.

Cellular automata Random number generation



So, the sequence begins 23, 52, 70, 90, and so forth.

Even though this sequence is completely deterministic, it gives an
appearance of randomness.

Unfortunately, this simple method tends to get stuck in a loop:

23,52,70,90,10,10,10,10,...

Choosing a different seed gives a different sequence:
85,22,48,30,90,10,10,10,...
42,76,77,92,46,11,12,14,19,36,29,84,5,25,62,84,5,25,62,84,...

Researchers have developed much better ways of generating random num-
bers (and for quantifying how “random” a sequence appears

Cellular automata Random number generation



For now, we’ll focus on generating a random real number from a
uniform(0,1) distribution.

We can use this to simulate a wide variety of random processes. How can
we use this to perform an action with probability p?

How can we convert the middle-square method into a uniform(0,1),
approximately?

Cellular automata Random number generation



Stochastic desiderata

A pseudorandom U(0, 1) sequence would ideally pass the following tests:

Frequency test (histograms with any bin width should show
approximately equal frequency)

Serial test (correlation should not be evident; equivalently the random
number should not be easily predictable)

Gap test (the sequence should not “avoid” particular intervals for
long stretches)

Poker test (bin data, check frequency of pairs, three-of-a-kind, full
house, etc. to “true” U(0, 1) probabilities)

Coupon collector test

Run test

Birthday spacings test

Cellular automata Random number generation


	Announcements
	Review
	Outline
	Cellular automata
	Lane changing
	Implementing cellular automata
	Random number generation

