
Random number generation

CE 391F

April 4, 2013

Random number generation



ANNOUNCEMENTS



Homework 3 due today

Homework 4 coming...

Random number generation Announcements



Webinar announcement

Femke van Wageningen-Kessels from TU Delft will be giving a webinar
titled Traffic Flow Model Tree: A Genealogical Overview of the History of
Traffic Flow Modeling”

Webinar is tomorrow at 10 Central time, sponsored by TRB Traffic Flow
Committee.

Random number generation Announcements



REVIEW



Cellular automata vs. car following

How can we handle lane changing?

How can we incorporate randomness into our models?

Random number generation Review



OUTLINE



Generating a uniform(0,1) number

1 Middle-square: simple but flawed

2 “Super-random” generator: complex but flawed

3 Statistical tests

4 Linear congruential method: simple but (potentially) good

Random number generation Outline



RANDOM NUMBER
GENERATION



What does it mean to generate a random number?

Most computers produce pseudorandom numbers: they give the
appearance of randomness, while being generated by a formula.

Random number generation Random number generation



A few historical options for generating random numbers in scientific
work...

Roll dice, draw cards, cast lots...

Draw balls from a “well-stirred urn”

Table of 40,000 digits “taken at random from census reports”

Atmospheric noise

Random number generation Random number generation



Middle-square method

Let’s say we want to generate a sequence of random two-digit numbers.

Begin by picking a seed value 1234

The first random number is the middle two digits: 23

Square 23, and pick the middle two digits as the next random number:
232 = 0529

Square 52, and get 2704.

Random number generation Random number generation



So, the sequence begins 23, 52, 70, 90, and so forth.

Even though this sequence is completely deterministic, it gives an
appearance of randomness.

Unfortunately, this simple method tends to get stuck in a loop:

23,52,70,90,10,10,10,10,...

Choosing a different seed gives a different sequence:
85,22,48,30,90,10,10,10,...
42,76,77,92,46,11,12,14,19,36,29,84,5,25,62,84,5,25,62,84,...

Researchers have developed much better ways of generating random num-
bers (and for quantifying how “random” a sequence appears.)

Random number generation Random number generation



For now, we’ll focus on generating a random real number from a
uniform(0,1) distribution.

We can use this to simulate a wide variety of random processes. How can
we use this to perform an action with probability p?

How can we convert the middle-square method into a uniform(0,1),
approximately?

Random number generation Random number generation



Perhaps the middle-square method is “too simple.” What if we went to a
really complex algorithm?

Don Knuth experimented with a “super random” algorithm, which
executed different randomizing steps a random number of times, based on
the digits of the previous ten-digit number X .

Random number generation Random number generation



1 Let Y be the most significant digit of X . Repeat step 2 Y times.
2 Let Z be the second-most significant digit of X . Jump down Z + 1

steps.
3 If X < 5000000000, add 500000000 to X .
4 Middle-square X
5 Multiply X by 1001001001 and pick the ten least significant digits.
6 If X < 100000000, add 9814055677, otherwise subtract X from

1000000000
7 Swap the first five digits of X and the last five digits.
8 Repeat step 5.
9 Decrease every positive digit in X by one.
10 If X < 99999, square X and add 99999. Otherwise subtract 99999

from X .
11 Add zeros to the end of X until it is greater than 100000000.
12 Replace X by the middle ten digits of X (X − 1).

Don’t focus on the details, the point is, it’s complicated and would seem to
do an exceptionally good job of jumbling a number.

Random number generation Random number generation



Perhaps the middle-square method is “too simple.” What if we went to a
really complex algorithm?

Don Knuth experimented with a “super random” algorithm, which
executed different randomizing steps a random number of times, based on
the digits of the previous ten-digit number X .

When he tried this, the program converged almost immediately to
6065038420, which is unchanged by the above algorithm!

Trying another starting value, after the 7401th iteration, the numbers fell
into a cycle of length 3178.

In other words, exceptionally complex methods are not necessarily good.
Furthermore, exceptionally complex methods are exceptionally difficult to
analyze. With simpler methods, we may be able to actually prove that they
work “well.”

Random number generation Random number generation



Stochastic desiderata

A pseudorandom U(0, 1) sequence would ideally pass the following tests:

Frequency test (histograms with any bin width should show
approximately equal frequency)

Serial test (correlation should not be evident; equivalently the random
number should not be easily predictable)

Gap test (the sequence should not “avoid” particular intervals for
long stretches)

Poker test (bin data, check frequency of pairs, three-of-a-kind, full
house, etc. to “true” U(0, 1) probabilities)

Coupon collector test

Run test

Birthday spacings test

For more philosophical and mathematical discussions on what “randomness”
actually means, see Knuth, TAOCP, volume 2.

Random number generation Random number generation



Linear Congruential Method

The LCM is a simple algorithm that can actually be quite good according
to our desiderata, and provably so. It uses the formula

Xn+1 = (aXn + c) mod m

and requires four parameters: m, the modulus; a, the multiplier; c, the
increment; and X0, the starting value.

The notation x mod m means the remainder after dividing x by m.
Therefore, x mod m will always be between 0 and m − 1, so (x
mod m)/m can approximate a U(0, 1).

Random number generation Random number generation



Example: m = 100, a = 13, c = 57, X0 = 12

The first step gives: X1 = (13× 12 + 57) mod 100 = 13

The next step gives X2 = (13× 13 + 57) mod 100 = 26

The next step gives X3 = (26× 13 + 57) mod 100 = 95

The next step gives X4 = (95× 13 + 57) mod 100 = 92

The next step gives X4 = (92× 13 + 57) mod 100 = 53

...and so on.

Random number generation Random number generation



Not all choices of m, a, and c will lead to a “good” generator.

Obviously a = 0 or a = 1 are horrible choices (why?)

What would happen if m = 2?

Will the LCM eventually cycle?

Can we determine how long the cycle will be?

Random number generation Random number generation



The LCM has no “memory”, every number maps onto exactly one number
between 0 and m − 1.

1 2 3 4 5 6 7 8 9 10 11 12

Therefore, the LCM must eventually cycle, and the period can be no
longer than m.

Therefore, we usually want m to be fairly large.

Random number generation Random number generation



Theorem. The linear congruential sequence has period length m iff:

c and m are relatively prime

a− 1 is a multiple of every prime dividing m

If m is a multiple of 4, so is a− 1.

Proof. Requires some number theory.

Random number generation Random number generation



Examples

m = 18, a = 7, c = 5 has full period:

0, 5, 4, 15, 2, 1, 12, 17, 16, 9, 14, 13, 6, 11, 10, 3, 8, 7, 0, . . .

Violating the first condition, let m = 18, a = 7, c = 6:

0, 6, 12, 0, . . .

Violating the second condition, let m = 18, a = 6, c = 5:

0, 5, 17, 17, . . .

Violating the third condition, let m = 16, a = 7, c = 5

0, 5, 8, 13, 0, . . .

Random number generation Random number generation



Caution!

Period length is not the only relevant factor! a = c = 1 has full period,
but is completely useless as a “random” number generator.

The other statistical tests should be used to ensure randomness. A good
generator should pass all of those tests.

Passing any test does not mean the generator is good; but failing any test
means it is bad.

Random number generation Random number generation



Some values used in practice:

m = 232, a = 1664525, c = 1013904223

m = 232, a = 22695477, c = 1

m = 231, a = 1103515245, c = 12345

To turn this into a U(0, 1) variate, divide by m

Random number generation Random number generation



The system is governed by the following rules, all four of which are applied
to each vehicle in the stated order:

Acceleration: If the velocity v is less than vmax , and the distance to
the next car ahead is greater than v + 1, the speed increases by 1.

Car-following: If the distance to the next vehicle is j and j ≤ v , the
speed decreases to j − 1.

Randomization: Generate a random number between 0 and 1. If
less than p and v > 0, decrease v by 1.

Motion: The vehicle advances v cells.

Note that if you are using the LCM, you just need to keep track of the
previous number used to generate the next one. You do have to select a
seed X0 to begin with.

Random number generation Random number generation



Other distributions

In traffic simulation, we are often concerned with other types of
distributions in addition to the uniform. A typical example:

Vehicles enter the facility according to a Poisson process (i.e., time
between new vehicles is exponentially distributed)

vmax for different vehicles follows a uniform distribution between 4
and 6.

l for different vehicles follows a normal distribution with mean 10 and
standard deviation 2.

and so on...

If we were doing a car-following simulation, we may have distributions for T
and λ, and each time a vehicle is generated, we need to pick an appropriate
value.

Random number generation Random number generation



PROBABILITY REVIEW



Review of basic concepts

A random variable X has the cumulative distribution function FX if
P(X ≤ x) = FX (x) for all x .

Cumulative distribution functions are nonnegative, nondecreasing, tend to
0 as x → −∞ and to 1 as x →∞.

If FX is continuous and differentiable almost everywhere, X is a
continuous random variable, and its derivative fX is the probability density
function of X .

P(a < X < b) =

∫ b

a
fX (x) dx = FX (b)− FX (a)

Random number generation Probability review



Some common distributions

The uniform distribution between A and B has the pdf fX (x) = 1/(B − A)
if x ∈ [A,B] and 0 otherwise, and the cdf FX (x) = (x − A)/(B − A) if
x ∈ [A,B], 0 if x < A, and 1 if x > B.

The exponential distribution with mean λ has the pdf
fX (x) = 1

λ exp(−x/λ) if x ≥ 0 and 0 otherwise, and cdf
FX (x) = 1− exp(−x/λ) if x ≥ 0 and 0 otherwise.

The normal distribution with mean mean µ and variance σ2 has the pdf
fX (x) = 1√

2πσ2
exp(−(x − µ)2/2σ2), and its cdf has no closed form.

Random number generation Probability review



So far, we’ve discussed how to generate random numbers from a uniform
distribution with A = 0 and B = 1. How can we generate random
numbers from the distributions on the previous slide?

Random number generation Probability review


	Announcements
	Review
	Outline
	Random number generation
	Probability review

