Sampling from nonuniform distributions

CE 391F

April 9, 2013

REVIEW

What kinds of distributions are we considering in this class?

How do we generate a $U(0,1)$ number?

What makes for a good random number generator?

OUTLINE

Generating other kinds of random number

(1) Uniform between A and B
(2) Uniform integers
(3) Generic distributions
(1) Exponential distribution
(5) Standard normal distribution
(0) Nonstandard normal distribution

From here on out, we'll assume that we have a good generator for $U(0,1)$ variates, which we will refer to as U (possibly with subscripts).

OTHER TYPES OF UNIFORM DISTRIBUTION

What if we wanted a random number uniformly drawn between any real numbers A and B, where $A \leq B$?

Not difficult, generate a $U(0,1)$ and scale it:

$$
A+(B-A) U
$$

What if we wanted a random integer uniform between two integers C and D, inclusive $(C \leq D)$?

Requires a little bit more care. Define the "floor" function $\lfloor x\rfloor$ to be the greatest integer less than or equal to x.

Then we can do

$$
\lfloor(D-C+1) U+C\rfloor
$$

What about sampling from non-uniform distributions?

Let's try to leverage the generator U. What else ranges from 0 to 1 in the context of probability distributions?

One idea is the cdf. If X has $\operatorname{cdf} F_{X}(x)$, it ranges between 0 and 1 .

Furthermore, wherever the pdf is positive, F_{X} is strictly increasing and thus invertible.

So, one idea is to generate U, then see what value of x satisfies $F_{X}(x)=U$.

This method actually works, and is called "inverse transform sampling."

Proof: Not that difficult.

- $P(U \leq p)=p$ for any $p \in[0,1]$.
- We want $P(X \leq x)=F_{X}(x)$ for any x.
- Fix x. Since $F_{X}(x) \in[0,1], P\left(U \leq F_{X}(x)\right)=F_{X}(x)$
- Therefore $P\left(F_{X}^{-1}(U) \leq x\right)=F_{X}(x)$
- So, if $X=F_{X}^{-1}(U)$, then X has the right distribution.

Note that this requires F_{X} to be invertible. This isn't a major problem with continuous random variables, since F_{X} is only noninvertible in regions with zero probability. This derivation relies on the fact that F is nondecreasing. Why?

We can use this to develop a formula for sampling the exponential distribution.

Recall that the exponential distribution with mean λ has the pdf $f_{X}(x)=\frac{1}{\lambda} \exp (-x / \lambda)$ if $x \geq 0$ and 0 otherwise, and cdf $F_{X}(x)=1-\exp (-x / \lambda)$ if $x \geq 0$ and 0 otherwise.

What is the inverse of the CDF?

Directly applying inverse transform sampling would give $X=-\lambda \log (1-U)$.

We can simplify further... if U is $U(0,1$, so is $1-U$, so the formula can be reduced to $X=-\lambda \log U$.

Can we visualize what inverse transform sampling is doing?

Inverse transform sampling works for any distribution where we can compute the inverse cdf. Usually, that's not a problem, but in one common case it is:

The normal distribution with mean mean μ and variance σ^{2} has the pdf $f_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-(x-\mu)^{2} / 2 \sigma^{2}\right)$.

Try any integration tricks you like, there is no way to obtain the cdf in closed form (let alone its inverse).

The Box-Muller method is an ingenious way of generating normal samples from $U(0,1)$ samples.

Oddly enough, even though $\int \exp \left(-x^{2}\right) d x$ can't be written in closed form, we can show that

$$
\int_{-\infty}^{\infty} \exp \left(-x^{2}\right) d x=\sqrt{\pi}
$$

The trick is to introduce a second copy of the pdf, convert to polar coordinates, integrate, and then take the square root to get the original pdf back.

A similar method can be applied to generate independent standard normal samples, when $\mu=0$ and $\sigma^{2}=1$.

We will use two $U(0,1)$ samples U_{1} and U_{2} to generate two standard normal samples X and Y

At a high level, we will use U_{1} and U_{2} to generate R^{2} and Θ using inverse transform sampling, then convert to rectangular coordinates to obtain Z_{1} and Z_{2}.

If we multiply the pdfs for X and Y together (valid since they are independent), we obtain

$$
f_{X, Y}(x, y)=\frac{1}{2 \pi} \exp \left(-\left(x^{2}+y^{2}\right)\right)
$$

We then apply the transformation $r^{2}=x^{2}+y^{2}, \theta=\tan ^{-1}(y / x)$

Recall that when transforming PDFs, we need to multiply by the determinant of the transformation's Jacobian:

$$
|J|=\left|\begin{array}{ll}
\frac{\partial r^{2}}{\partial x} & \frac{\partial r^{2}}{\partial y} \\
\frac{\partial \theta}{\partial x} & \frac{\partial \theta}{\partial x}
\end{array}\right|
$$

(This is the same thing that happens when we apply transformations to multiple integrals.)

It turns out that $|J|=2$, so the appropriate joint pdf for R^{2} and Θ is

$$
f_{R, \Theta}(r, \theta)=\frac{2}{2 \pi} \exp \left(-r^{2} / 2\right)
$$

We can factor this into marginal pdfs for R^{2} and Θ : ${ }^{\text {' }}$

$$
\begin{gathered}
f_{\Theta}(\theta)=\frac{1}{2 \pi} \\
f_{R^{2}}\left(r^{2}\right)=2 \exp \left(-r^{2} / 2\right)
\end{gathered}
$$

Notice that Θ has a uniform distribution between 0 and 2π, and R^{2} has an exponential distribution with mean 2.

We know how to generate both of those, and from here the rest of the procedure is simple:

- Generate two uniform $(0,1)$ variates U_{1} and U_{2}.
- Generate $\Theta=2 \pi U_{1}$
- Generate $R^{2}=-2 \log U_{2}$.
- Generate $X=R \cos \Theta$ and $Y=R \sin \Theta$

Presto! You know have two random numbers X and Y with independent standard normal distributions.

What about a nonstandard normal distribution with arbitrary μ and σ^{2} ?

Other distributions

In traffic simulation, we are often concerned with other types of distributions in addition to the uniform. A typical example:

- Vehicles enter the facility according to a Poisson process (i.e., time between new vehicles is exponentially distributed)
- $v_{\text {max }}$ for different vehicles follows a uniform distribution between 4 and 6 .
- I for different vehicles follows a normal distribution with mean 10 and standard deviation 2.
- and so on...

If we were doing a car-following simulation, we may have distributions for T and λ, and each time a vehicle is generated, we need to pick an appropriate value.

