Calibrating LWR models

CE 391F

February 14, 2013

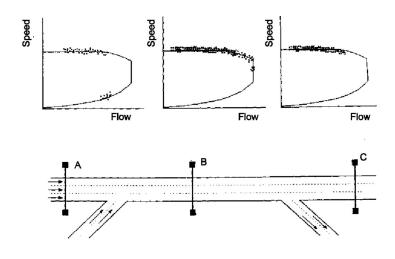
ANNOUNCEMENTS

- Homework 1 due today
- No class Tuesday

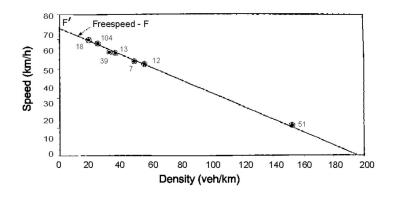
- Cell transmission model
- Comparison of LWR solution methods

Collecting data R

Shock spreading demonstration


Assume $u_f=1$, w=1/4, $q_{max}\Delta t=50$, N=250. There is a stationary queue at jam density, and upstream of the queue the number of vehicles in each cell is n=50.

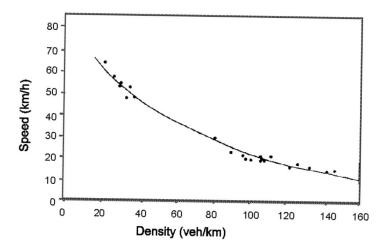
What would shockwave theory predict?


What does the CTM give?

CALIBRATING LWR MODELS

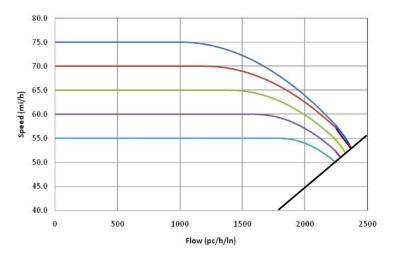
Be cautious where you collect data!

The (in)famous Greenshields relationship



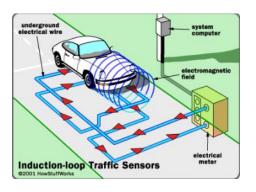
This data was collected by Greenshields on Labor Day in 1934, and was the basis of practice (and HCM) for roughly five decades.

This work is seminal, but infamous. Why infamous?


- Data collected on a one-lane road, not a freeway
- Vehicles were counted in "overlapping" groups of 100
- Some averaging occurred prior to regression
- The lone congested point was collected on a different roadway on a different day
- Model based on holiday traffic rather than regular commuters

The Greenberg model

Collected in the (one-lane!) Lincoln Tunnel in 1959, based on a logarithmic fit to data $(u \propto \log(k/k_i))$


Highway Capacity Manual

Notice constant speeds for low flow rates, and that the "congested" piece isn't shown.

TRAFFIC DETECTION TECHNOLOGIES

Inductive Loops

Records: Volume and occupancy; can infer speed, density, etc. from

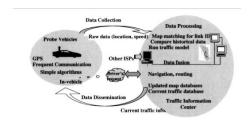
Advantages: Inexpensive fam

Advantages: Inexpensive, familiar

Disadvantages: In-pavement installation can cause maintenance and

other difficulties

Video Detection


Records: Volume, density, speed, trajectories, classification

Advantages: Nonintrusive, comprehensive

Disadvantages: Image processing less effective at night or in poor

weather, glare, etc.

Wireless Technology

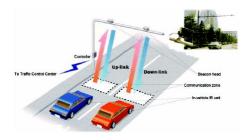
Records: Trajectories, speeds and travel times; volume (indirectly)

Advantages: Low deployment and operational cost

Disadvantages: Coverage, privacy, accuracy of triangulation/GPS

location

Laser Detection


Records: Volume; speed (with two detectors), vehicle classification, lane position

Advantages: Works well even in poor weather or at night, no safety risk

Disadvantages: Less accurate in stop-and-go conditions or extreme

temperatures; subject to vandalism

Infrared Detection

Similar to lasers, but less effective in rain and show

Radar/Acoustic Detection

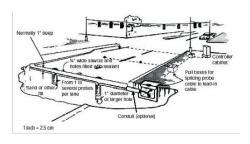
Records: Volume; speed, length, lane position

Advantages: Inexpensive and reliable

Disadvantages: Shadowing effects with large vehicles, less accurate for

slow traffic

Weigh-in-motion

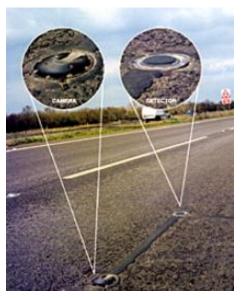


Records: Weight primarily, but can get volume and often classification

Advantages: Already in place at selected locations

Disadvantages: In-pavement installation

Wireless magnetic technology



Records: Volume and speed **Advantages:** Low-power

Disadvantages: Less effective at measuring vehicle perimeter (and thus

length and occupancy)

Intelligent road studs

Records: Volume, speed, and classification

llecting data Traffic Detection Technological

Aerial image analysis

Records: Density, queue lengths

Advantages: Highest possible coverage, internally consistent data **Disadvantages:** Static image, cannot directly get volume or speed;

expensive to obtain

INFORMAL EVALUATIONS

- How is the pace of the class so far? (SLOW / OK / FAST)
- What topic is most unclear at this point?
- What about my teaching is most helpful to you?
- What can I do better?
- Any other comments?