CE 391F: Homework 2

Due Thursday, March 7

Problem 1. Consider a roadway with a trapezoidal fundamental diagram, with free-flow speed 30 mph , capacity 1800 veh/hr, jam density $240 \mathrm{veh} / \mathrm{mi}$, and backward wave speed 15 mph . The inflow rate has a triangular profile: the inflow rate is $90 t$ veh/hr for $0 \leq t \leq 15$ (t measured in minutes), $90(30-t)$ veh/hr for $15 \leq t \leq 30$, and 0 afterwards. This inflow rate is measured 1 mile upstream of a traffic signal with a 60 -second cycle length, starting at $t=0$ with 15 seconds of effective green followed by 45 seconds of effective red; assume that the fundamental diagram is not affected by turning vehicles. For all parts of this problem, use the cell transmission model with a timestep of 15 seconds.
(a) What is the time at which the last vehicle passes the signal?
(b) Estimate the maximum queue length which will occur.
(c) What is the average travel time for the vehicles on this roadway, measuring travel time from 1 mile upstream of the signal to immediately downstream of the signal?
(d) Now, assume that the signal timing can be changed: the cycle length remains 60 s, but the effective green and red times can be changed (but must be multiples of 15 seconds). What is the minimum effective green time which would be needed to ensure that the queue on this approach is always cleared at the start of each red interval?

Problem 2. Continuing Problem 1, assume that this signal lies at the intersection of two one-way roads. One was described in Problem 1; the other has an identical fundamental diagram, but a slightly different inflow rate: a constant $1200 \mathrm{veh} / \mathrm{hr}$ for $0 \leq t \leq 30$ (t in minutes), again measured 1 mile upstream of the signal. The effective green time for each approach corresponds exactly to the effective red time to the other approach.
(a) Returning to the initial scenario in Problem 1 (the first approach has 15 seconds of green and 45 seconds of red), what is the average travel time if we account for vehicles on both roadways (again measuring travel times from 1 mile upstream of the signal to immediately downstream).
(b) Propose a revised signal timing for reducing average travel time. You may change either the cycle length or the allocation of green and red times, as long as all values are multiples of 15 seconds, and the signal turns green for the first approach at $t=0$. (These values must remain constant over the modeling period.) What is the average travel time for your revised timing? 10 extra credit points will be awarded to the best timing in the class, divided among the number of students who found that value.

Problem 3. As discussed in class, a single loop detector can only measure flow and occupancy (the fraction of time a vehicle overlaps any part of the detector). Making some assumptions about vehicle length, we can relate this to other traffic variables. Assume that all vehicles have the same length L, and that the detector itself has a length of d.
(a) If a detector measures a vehicle on top of it for t seconds, what speed is the vehicle traveling?
(b) If we observe n vehicles passing the detector in a time interval T, find an equation relating the occupancy O to the space-mean speed \bar{u}_{s} of the vehicles and the flow q; then use the fundamental relationship to find an equation relating density to occupancy.

