CE 391F: Homework 3

Due Thursday, April 4

Problem 1. Consider a roadway with the following boundary conditions: for $x=0$ and $t>0, k(x, t)=80$ vehicles per mile, $u(x, t)=40$ miles per hour, and $w(x, t)=0$. For $t=0$ and $0 \leq x \leq 1, k(x, t)=80+160 x$ veh $/ \mathrm{mi}, u(x, t)=40-40 x \mathrm{mi} / \mathrm{hr}$, and $w(x, t)=-40 \mathrm{hr}^{-1}$ (x measured in miles). The momentum equation on this road has $c_{0}^{2}=1.5 \mathrm{mi}^{2} / \mathrm{hr}$ and $\tau=6 \mathrm{~s}$.

Use an implicit method to solve the momentum and conservation equations on this roadway, with t ranging from 0 to 18 seconds and x ranging from 0 to 0.5 miles. Use a solution lattice with a 6 second time step and 0.1 mile spatial step, and ensure that the absolute values of the momentum and conservation equations are less than 10^{-4} at each lattice point (they would be zero in an exact solution). Report the k, u, and w values at the midpoints of the rectangles.

Problem 2. Your vehicle is initially traveling at a speed of 30 mph , the same initial speed as the car in front of you, with a 900 -foot following distance. Over the next fifteen seconds, you accelerate at a constant rate to 40 mph while the car in front of you maintains its speed. For thirty seconds after that, you decelerate to 30 mph at a constant rate, a speed which you maintain afterwards.
(a) If the car in front of you is 6 feet high, plot the visual angle over time.
(b) At what time is the change in visual angle greatest?

Problem 3. Three cars are driving on a single-lane road, with the second car 500 ft behind the lead car, and the third car 500 ft behind the second. Initially all vehicles are driving at a steady speed of $80 \mathrm{ft} / \mathrm{s}$, when the lead vehicle begins to brake. The lead vehicle's trajectory is described by $x_{1}(t)=640 /\left(1+e^{-t / 2}\right)$, where t is measured in seconds and x_{1} in feet. Use the basic car-following model $\ddot{x_{f}}(t)=\lambda\left(\dot{x_{\ell}}(t-T)-\dot{x_{f}}\right)(t-T)$ (with $\lambda>0$) to answer the following questions. The second car has a reaction time of 2 seconds; the third car has a reaction time of 1 second. What range of λ values do you believe provides reasonable behavior? Provide plots to support your answers.

