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OUTLINE



Recall that link-based methods require very little memory, but are also
slow to converge.

By contrast, path-based methods are much faster, but can potentially
require a large amount of memory.

The Chicago regional network has roughly 90 million equilibrium paths; each
path contains several dozen links on average.
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Bush-based methods involve substantially less memory than path-based
methods, and don’t seem to be any slower. Some evidence even suggests
that they are faster.

Caveat: It is relatively difficult to compare the most advanced algorithms;
much of their performance depends on subtle implementation details.
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Remember that a bush is a acyclic subnetwork in which every node can be
reached from the root.

At the equilibrium solution, the set of all paths used by a given origin
forms a bush. (Why?)

In a bush-based algorithm, we maintain a set of bushes, one for each
origin. We have two goals:

1 Find the right bush for each origin (containing all of the paths used at
equilibrium).

2 Find the link flows on the bush links which satisfy the equilibrium
principle.

Origins are only allowed to place flow on links in the bush.

Bush-based algorithms Outline



All bush-based algorithms perform the following steps:

1 Create an initial bush for each origin (easy way: start with shortest
paths using free-flow times)

2 Shift flows within each bush to move it closer to equilibrium.

3 Update the bushes to remove unused links, and to add links which
provide shorter paths.

Step 2 is where most bush-based algorithms differ.
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Some bush-based algorithms:

Origin-based assignment (Bar-Gera, 1999–2000; Nie, 2009)

Algorithm B (Dial, 1999–2006)

LUCE (Gentile, 2009)

TAPAS (Bar-Gera, 2011)
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ALGORITHM B



Algorithm B adopts the following simple rule for step 2:

For each destination, find the longest used path from the origin as well as
the shortest path on the bush. Use Newton’s method to shift flow between
these paths to move towards equilibrium.

The Newton shift works in the same way as for gradient projection, but
the bush structure makes it easier to find longest and shortest paths.
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This relies on the acyclic property of bushes: longest and shortest paths
can be found by simply going over the network in topological order.

By contrast, if there are cycles, shortest path is a bit harder, and finding
longest paths is much harder.
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In step 3, bushes are updated using the following rules:

If a bush link has zero flow, it is removed (unless doing so would
disconnect a node from the root)

If a non-bush link “provides a shortcut”, it is added.

Specifically, if Li is the travel time on the shortest path to node i only
using bush links, a link (i , j) is a shortcut if Li + tij < Lj .

Will adding links according to this rule create a cycle?
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COMPONENTS



1 2 3

4 5 6

7 8 9

tij = 3 + (xij/200)2 on thin links
tij = 5 + (xij/100)2 on thin links
OD matrix: d49 = 1000, d49 = 1000
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Free flow travel times
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Initial bushes

1 2 3

4 5 6

7 8 9

3

3
3 3

3

3

5

5

5

5

5

1 2 3

4 5 6

7 8 9

3 3

3

5

5

1 2 3

4 5 6

7 8 9

3

3
3 3

3

3

5

5

5

5

5

1 2 3

4 5 6

7 8 9

3 3

3

5

5

Bush-based algorithms Components



1 2 3

4 5 6

7 8 9

3

3
3 3

3

3

5

5

5

5

5

1 2 3

4 5 6

7 8 9

3 3

3

5

5

1 2 3

4 5 6

7 8 9

3

3
3 3

3

3

5

5

5

5

5

1 2 3

4 5 6

7 8 9

3 3

3

5

5

These bushes are at equilibrium because there is only one path from each
origin to the destination.
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Initial link flows
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Travel times
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Add shortcuts to the bush for origin 1
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Identify shortest and longest paths to destination 9
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The pair of alternate segments is {[1, 4, 5, 6], [1, 2, 3, 6]}.
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Flow on [1, 4, 5, 6]: 0
Flow on [1, 2, 3, 4]: 1000
Travel time on [1, 4, 5, 6]: 13
Travel time on [1, 2, 3, 4]: 84
Derivative on [1, 4, 5, 6]: 0
Derivative on [1, 4, 5, 6]: 0.15

Newton shift is given by

84− 13

0 + 0.15
= 473
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Flow on [1, 4, 5, 6]: 473
Flow on [1, 2, 3, 4]: 527
Travel time on [1, 4, 5, 6]: 63.4
Travel time on [1, 2, 3, 4]: 29.8
Derivative on [1, 4, 5, 6]: 0.213
Derivative on [1, 4, 5, 6]: 0.079

Newton shift is given by

63.4− 29.8

0.079 + 0.213
= 115

Bush-based algorithms Bush 1 Equilibrium



1 2 3

4 5 6

7 8 9

642
358

358 358

642
642

0

0

0

0

1000

Newton shift is given by

63.4− 29.8
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= 115
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Flow on [1, 4, 5, 6]: 358
Flow on [1, 2, 3, 4]: 642
Travel time on [1, 4, 5, 6]: 41.9
Travel time on [1, 2, 3, 4]: 39.9
Derivative on [1, 4, 5, 6]: 0.161
Derivative on [1, 4, 5, 6]: 0.097

Newton shift is given by

41.9− 39.9

0.161 + 0.097
= 7.71
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Newton shift is given by
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Flow on [1, 4, 5, 6]: 350
Flow on [1, 2, 3, 4]: 650
Travel time on [1, 4, 5, 6]: 40.64
Travel time on [1, 2, 3, 4]: 40.65
Derivative on [1, 4, 5, 6]: 0.158
Derivative on [1, 4, 5, 6]: 0.097

Newton shift is 0.034, close
enough to equilibrium.
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DEMONSTRATION



COMPLETE ALGORITHM
SPECIFICATION



1 Create an initial bush for each origin (easy way: start with shortest
paths using free-flow times)

2 Shift flows within each bush to move it closer to equilibrium: move
flows from longest paths to shortest ones using Newton’s method.

3 Update the bushes to remove unused links, and to add links which
provide shorter paths.

The second and third steps are easier if we first calculated several labels for
bush links and nodes.
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BUSH LABELS



Bush labels

As with Dial’s method for stochastic network loading, we use x rij to denote
the flow on each link, and Lri to denote the travel time on the shortest
path from the origin r to node i .

A new set of labels are U r
i , denoting the travel time on the longest used

path from the origin r to node i .

We already know how to find shortest paths: how do we find longest paths?
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Since a bush is acyclic, we can modify the shortest path algorithm to
create a “longest path” algorithm:

1 Initialize by setting U r
i ←∞ and q̄ri ← −1 ∀i ∈ N, and set U r

r ← 0

2 Let i be the node topologically following r .

3 (By this point, we have found the longest path from r to all nodes
topologically before i)

4 Find the longest used path from r to i by looking at each of the tail
nodes one could arrive from:

U r
i = max

(h,i)∈A:x rhi>0
{U r

h + thi}

q̄ri = arg max
(h,i)∈A

{U r
h + thi}

5 Is i the last node topologically? If so, stop. Otherwise, let i be the
next node topologically and return to step 3.

Interestingly, the longest path problem is extremely difficult in networks with
cycles.
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Example
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See Figures 7.11 and 7.12 in text.
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SHIFTING FLOWS ON A
BUSH



Once the L and U labels are calculated, we use these to shift flows from
the longest paths to shortest paths.

Newton’s method is used to determine how much flow to shift.

From each node i , trace the longest and shortest paths using the q and q̄
labels until you find the divergence node a where they last split. (If
qi = q̄i , node i can be skipped.)

This gives a pair of alternate segments, one corresponding to the longest
used path πU , and one corresponding to the shortest path πL.
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Given this pair of alternate segments, Newton’s method tells us to shift

∆h =
(Ui − Ud)− (Li − Ld)∑

(g ,h)∈πL∪πU t ′gh

flow to approximately equalize travel times.
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1 Calculate the L and U labels in forward topological order.

2 Let i be the topologically last node in the bush.
3 Scan i by performing the following steps:

1 Use the L and U labels to determine the divergence node a and the
pair of alternate segments πL and πU .

2 Calculate ∆h using Newton’s method (capping ∆h at min(i,j)∈πU
xij if

needed).
3 Subtract ∆h from the x label on each link in πU , and add ∆h to the x

label on each link in πL.

4 If i = r , go to the next step. Otherwise, let i be the previous node
topologically and return to step 3.

5 Update all travel times tij and derivatives t ′ij using the new flows x
(remembering to add flows from other bushes.)

Bush-based algorithms Shifting flows on a bush



7 8 9

4 5 6

1 2 3
2 + x2

2 + x2

2 + x2

2 + x2

2 + x2

2 + x2

2 + x2

2 + x2

4 +2x2

4 +2x2

40 +2x2

2 + x2
2 + x2

(Figure 8.10a)
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UPDATING A BUSH



After all the flow shifts are complete, the bush can be updated by
recalculating the L and U labels with new travel times.

Any link with zero flow is removed from the bush (unless it is needed for
connectivity).

Any link with Ui + tij < Uj can be added to the bush.
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