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INPUT DATA



What do you need to run the basic traffic assignment model?

The network itself

Link performance functions

OD matrix

The extensions of TAP require additional information, such as demand func-
tions, destination attractiveness, logit parameters, value of time, etc.
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Deciding which streets to include in the network is a balance of accuracy
and computation time/data collection requirements.

In practice, regional models typically include minor arterials and larger
roads; neighborhood streets are typically abstracted into centroid
connectors:

Neighborhood streets are typically uncongested, so there isn’t a need to
model them in great detail. (Or is there?)
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Ideally, link performance functions are obtained through regression of field
data. What are the complications?

Traffic engineering concepts (signal delay, etc.) can also be included.
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When you have a network of tens of thousands of links, this is impractical.

The advantage of “standard functions” like the BPR relation are simpler
data collection requirements:

tij = t0
ij

(
1 + α

(
xij
cij

)β)

Free-flow speeds and capacities are relatively easy to calculate. Typically
α = 0.15 and β = 4.

Caution: The BPR “capacity” is intended to be a “practical capacity”
corresponding to LOS C, roughly 80 percent of true capacity. If true
capacity is used, α = 0.84 and β = 5.5 are recommended instead.
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The OD matrix is often the most challenging input data to calibrate, for
several reasons:

There are many more OD matrix entries than links.

The OD matrix can’t be observed directly (unlike link speeds and
flows).

Can we use direct observations (say, link flows) to try to estimate the OD
matrix?
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This is surprisingly difficult!

Because there are more OD matrix entries than links, the problem is highly
underdetermined; the problem is not finding an OD matrix that matches
the
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One trivial solution is for all trips to go from one node to a neighboring
node.
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(As an aside, the distinction between a good regression fit and a good
model is absolutely critical here.)
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We often have an OD matrix available from other parts of the planning
process, say, a gravity model. Can we use this “target” OD matrix as a
starting point which can be adjusted to conform to link flows?

OD Matrices Link flows

Observed flows

Target matrix
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Because field data contains some noise and error, however, all solutions
which satisfy link flows exactly may have short trips:
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Instead, we can try a least-squares approach where we try to match both
the target OD matrix and the link flows:

min
d,x

Θ
∑
rs

(
d rs − d

rs
)2

+ (1−Θ)
∑
ij

(xij − x ij)
2

where Θ reflects the importance put on matching the OD matrix relative
to the link flows; the proper balance is a matter of judgment and depends
on the level of trust in the accuracy of d and x.

We have two constraints: nonnegativity of OD matrix entries d rs ≥ 0, and
that the link flows x must be a user equilibrium solution given the OD
matrix d.
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Since user equilibrium is itself an optimization problem, we have a bilevel
program, where one of the constraints is itself an optimization problem:

min
d,x,h

Θ
∑
rs

(
d rs − d

rs
)2

+ (1−Θ)
∑
ij

(xij − x ij)
2

s.t. d rs ≥ 0 ∀(r , s) ∈ Z 2

x ∈ arg min
x′

∑
ij

∫ x ′ij

0
tij(x) dx

∑
π∈Πrs

hπ = d rs ∀(r , s) ∈ Z 2

hπ ≥ 0 ∀π ∈ Π

The “upper level” is a least squares fit for the OD matrix, and the “lower
level” is the user equilibrium condition.

Bilevel programs are generally difficult to solve, because the feasible region
is nonconvex. Heuristic solution methods are often the best we can do.
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An example of such a heuristic: write link flows as a function of demand
x(d) with the understanding that this function contains the equilibrium
mapping.

min
d

Θ
∑
rs

(
d rs − d

rs
)2

+ (1−Θ)
∑
ij

(xij(d)− x ij)
2

s.t. d rs ≥ 0 ∀(r , s) ∈ Z 2

A gradient projection algorithm can then be applied.
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Given some OD matrix d, identify the gradient ∇f (d) and take a step of
size µ in the opposite direction, “projecting” onto the feasible region:

d← [d− µ∇f (d)]+

So, what is ∇f (d)?

Its elements are

∂f

∂d rs
= 2Θ(d rs − d

rs
) + 2(1−Θ)

∑
(i ,j)∈A

(xij(d)− x ij)
∂xij
∂d rs

so we need to know what
∂xij
∂d rs is; that is, the sensitivity of flow on link

(i , j) to demand from OD pair (r , s).
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10x
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Because the link flows will adjust to restore equilibrium, the sensitivity
analysis amounts to solving a modified equilibrium problem with the
derivatives of the link performance functions without non-negativity
constraints

Specifically:

Replace each link performance function with t ′ijxij where t ′ij is the
derivative evaluated at the current equilibrium solution.

Fix each origin’s bush as the equilibrium bush in the original solution.

The only demand is 1 vehicle going from r to s

Solve the user equilibrium problem without non-negativity constraints.
(Easy for gradient projection or Algorithm B)

The resulting link flows are the values
∂xij
∂d rs
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Algorithm

So, our OD matrix estimation algorithm works as follows:

Initialize OD matrix to target, d← d

Solve for equilibrium link flows x corresponding to d

Calculate derivatives
∂xij
∂d rs for each link and OD pair using current link

travel time derivatives.

Calculate the gradient ∇f (d).

Update d← [d− µ∇f (d)]+ for some µ which ensures descent of f

Check convergence and return to step 2 if not converged.

You have to solve equilibrium many times in this algorithm; here it’s espe-
cially important to have a fast algorithm.
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BUSH-BASED SENSITIVITY
ANALYSIS



In a bush-based framework, the sensitivity analysis is not too difficult to
describe. At the equilibrium solution, the following equations must hold for
each bush:

Lrj − Lri − tij(x̄) = 0 ∀(i , j) ∈ Br

Lrr = 0∑
(h,i)∈Γ−1(i)

x̄ rhi −
∑

(i ,j)∈Γ(i)

x̄ rij = d ri ∀i ∈ N\r

∑
(h,r)∈Γ−1(r)

x̄ rhr −
∑

(r ,j)∈Γ(r)

x̄ rrj = −
∑
s∈Z

d rs

x̄ rij = 0 ∀(i , j) /∈ Br

By differentiating each of these equations with respect to one entry in the
OD matrix dr̂ ŝ , we can see how the solution would change with the OD
matrix.
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The derivatives we are interested in are
∂x rij
∂dr̂ ŝ

and
∂Lri
∂dr̂ ŝ

.

For brevity denote these by ξrij and Θi .

(We will need to handle each origin’s bush separately — this can be done
in parallel.)
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Taking derivatives, we have

Θr
j −Θr

i −
dtij
dxij

∑
r ′∈Z

ξr
′

ij = 0 ∀(i , j) ∈ Br

Θr
r = 0∑

(h,i)∈Γ−1(i)

ξrhi −
∑

(i ,j)∈Γ(i)

ξrij =

{
1 if r = r̂ and i = ŝ

0 otherwise
∀i ∈ N\r

∑
(h,r)∈Γ−1(r)

ξrhr −
∑

(r ,j)∈Γ(r)

ξrrj =

{
−1 if r = r̂

0 otherwise

ξrij = 0 ∀(i , j) /∈ Br
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With some manipulations, these equations can be seen as the optimality
conditions to the following convex optimization problem:

min
ξr

∫ ξij

0

dtij
dxij

ξ dξ

s.t.
∑

(h,i)∈Γ−1(i)

ξrhi −
∑

(i ,j)∈Γ(i)

ξrij = ∆ri ∀i ∈ N, r ∈ Z

ξrij = 0 ∀(i , j) /∈ Br

This is essentially a traffic assignment problem in modified form.
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Sensitivity traffic assignment problem

The relationships between the demand sensitivity problem and the original
traffic assignment problem:

1 Link performance functions are now linear, with slope dtij/dxij
2 The bush is fixed.

3 The only entry in the OD matrix is one unit of flow from r̂ to ŝ.

4 There are no non-negativity conditions.
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Example

1

2

3

4

50+x

50+x

10+x

10x

10x
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Example

1

2

3

4
1 1

11/13 2/13

-9/13

2/13 11/13

Bilevel problems Bush-based sensitivity analysis



NETWORK DESIGN



Another common bilevel program concerns optimal allocation of network
improvements.

Assume that the link performance function is tij(xij , yij), where xij is the
flow and yij is the amount of money spent improving this link (increasing
capacity, increasing free-flow speed, etc.)

Further, assume that the cost of improving link (i , j) by yij units is given
by a cost function Cij(yij).

The objective is to identify yij values that minimize the total cost,
including user costs (travel time) and capital improvement costs.
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What makes this problem difficult is how xij is determined: after the
network improvements are made, drivers will adjust their route choices to
find a new equilibrium.

This gives another bilevel problem:

min
y,x,h

∑
(i ,j)∈A

xij tij(xij , yij) +
∑

(i ,j)∈A

Cij(yij)

s.t. y ij ≥ 0 ∀(i , j) ∈ A

x ∈ arg min
x′

∑
ij

∫ x ′ij

0
tij(x , yij) dx

∑
π∈Πrs

hπ = d rs ∀(r , s) ∈ Z 2

hπ ≥ 0 ∀π ∈ Π

The problem is easy if we assume that route choices won’t change, but this
is completely unrealistic.
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Let’s apply the same approach as before:

Given some investment plan y, identify the gradient ∇f (y) and take a step
of size µ in the opposite direction, projecting onto the feasible region:

y← [y − µ∇f (y)]+

So, what is ∇f (y)?

Its elements are

∂f

∂yij
= xij

∂tij
∂yij

+
∑

(k,`)∈A

tk`
∂xk`
∂yij

+
dCij

dyij

so we need to know what ∂xk`
∂yij

is; that is, the sensitivity of flow on link

(k, `) to investing an additional dollar in improving (i , j).
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If yij is small enough, the set of equilibrium paths will usually remain the
same.

This means that the network demand will redistribute among the existing
equal-cost paths to maintain equilibrium.

In other words, each origin’s bush remains the same, and the travel times
on each path should remain equal.

As before, flows on paths can decrease as well as increase (this should be
obvious since there is no change in total demand).
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Changes in the link performance function

A similar sensitivity analysis can be done to chanegs in the link
performance function.

t(x) = t0

(
1 + α

(
x

γ

)β)

This function has four parameters t0, α, γ, and β. If any of these change,
the equilibrium solution will change as well.
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Differentiating the same equations with respect to one of these parameters
(call it yij) produces the following linear system:

Θr
j −Θr

i −
dtij
dxij

∑
r ′∈Z

ξr
′

ij −
dtij
dyij

= 0 ∀(i , j) ∈ Br

Θr
r = 0∑

(h,i)∈Γ−1(i)

ξrhi −
∑

(i ,j)∈Γ(i)

ξrij = 0 ∀i ∈ N\r

∑
(h,r)∈Γ−1(r)

ξrhr −
∑

(r ,j)∈Γ(r)

ξrrj = 0

ξrij = 0 ∀(i , j) /∈ Br

As before, all derivatives are evaluated at the current equilibrium solu-
tion.
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These equations form the optimality conditions for the following convex
program:

min
ξr

∫ ξij

0

(
dtij
dxij

ξ +
dtij
dy

)
dξ (1)

s.t.
∑

(h,i)∈Γ−1(i)

ξrhi −
∑

(i ,j)∈Γ(i)

ξrij = 0 ∀i ∈ N, r ∈ Z (2)

ξrij = 0 ∀(i , j) /∈ Br (3)
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Sensitivity traffic assignment problem

The relationships between the link performance function sensitivity
problem and the original traffic assignment problem:

1 Link performance functions are now linear, with slope dtij/dxij ; the
modified link has a constant term dtij/dyij added to it.

2 The bush is fixed.

3 The OD matrix has zeros in all entries.

4 There are no non-negativity conditions.
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Example

1

2

3

4

50+x

50+x

10+y+x

10x

10x

6 6
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Example


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 
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Example

1

2

3

4
0 0

1/13 -1/13

-2/13

-1/13 1/13
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OTHER APPROACHES



These heuristics are problem-specific, that is, they used features of the
equilibrium problem.

There is also a class of metaheuristics which can be applied to nearly any
optimization problem, regardless of convexity, differentiability, etc.
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MORE COMPLICATED
PROBLEMS AND

HEURISTICS



Some of the most broadly applicable methods are called heuristics (or
sometimes metaheuristics).

A heuristic is not guaranteed to find the global optimum, but often works
well in practice.
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In practice, heuristics are only used for very large problems, or problems
where there is no known exact method which is efficient enough to use.

Sometimes, finding a “good enough” solution in a short amount of time is
better than spending a lot of time to find the exact optimal solution. Why?
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Many heuristic techniques are inspired by the natural world.

Very commonly living systems successfully (if not optimally) accomplish
complicated tasks with relatively simple rules
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How do humans find shortest paths?
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How does an ant colony find food sources?
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How does natural selection work?
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Two common heuristics are:

Simulated annealing, which searches through the feasible region in a
half-systematic, half-random way.

Genetic algorithms, which maintain a “population” of feasible
solutions which are selectively “bred” with each other.

These algorithms make virtually no assumptions on the nature of the objec-
tive function or constraints.

Bilevel problems More complicated problems and heuristics



SIMULATED ANNEALING



Imagine a hiker walking through a mountainous park area.

The hiker is trying to find the lowest elevation point in the park. (The
park is the feasible region, the elevation profile is the objective function.)
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However, there is a dense fog and the hiker has no map, so they have to
rely on what they can see nearby.

What strategy should they use to try to find the lowest point?
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One approach is to always walk in a downhill direction.

x

f(x)

The downside of this “local search” strategy is that it is very easy to get
trapped in a local minimum which is not global.
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So, sometimes we need to walk uphill... but we can’t do it all the time.

The simulated annealing algorithm incorporates randomization into local
search.

A typical step of simulated annealing works as follows:

Given a current feasible solution x, generate a new feasible solution x′

which is close to x.

Compare f (x) and f (x′). If x′ is better, accept x′ as the new current
solution and repeat.

If x′ is worse, accept x′ with some probability and repeat. Otherwise,
generate another x′.
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How should this probability be chosen? We run into problems if the
probability is too high or too low.

Simulated annealing uses a parameter T called the temperature to reflect
the probability of moving uphill. When the temperature is high, uphill
moves are more likely to be chosen. When the temperature is low, uphill
moves are unlikely to be chosen. The algorithm uses a cooling schedule to
gradually decrease the temperature over time.

The hope is that having an initially high temperature allows a large portion
of the feasible space to be explored, but that lowering the temperature
ensures that over time there is more and more preference for lower points.

One common formula (not the only choice) for the probability of moving
uphill is exp(−[f (x′)− f (x)/T ).
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One common cooling schedule is to start with an initial temperature T0,
and multiply it by a common factor k ∈ (0, 1) every n iterations.

Finally, since there is no guarantee that the algorithm will end up in the
lowest point found during the search, you should keep track of the best
solution found so far (call it x∗).

This is like the hiker keeping a record of their journey, and at the end of
their search returning to the lowest point found so far.
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Then, the entire algorithm is:

1 Choose some initial feasible solution x ∈ X , and calculate the value of
the objective function f (x).

2 Initialize the best solution to the initial one x∗ ← x.

3 Set the temperature to the initial temperature: T ← T0

4 Repeat the following steps n times:

(a) Randomly generate a new feasible solution x′ which neighbors x.
(b) If f (x′) < f (x∗), it is the best solution found so far, so update x∗ ← x′.
(c) If f (x′) ≤ f (x), it is a better solution than the current sone, so update

x← x′.
(d) Otherwise, update x← x′ with probability exp(−[f (x′)− f (x)]/T )

5 If T > Tf , then reduce the temperature (T ← kT ) and return to
step 4.

6 Report the best solution found x∗
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Some questions:

How should the cooling schedule be chosen? Hard to give general
guidance, very problem-specific. Trial and error is common.

How should the initial solution be chosen? If you can come up
with a good rule of thumb quickly, use it. Otherwise, just randomize.

What is a neighboring solution? Again problem-specific; should be
similar to the current solution, but should eventually be able to reach
any other feasible point.

How can I perform an action with probability p?

Generate a uniform random number between 0 and 1, perform the
action if that number is less than p.
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GENETIC ALGORITHMS



Genetic algorithms attempt to find a good-quality solution by mimicing
the process of natural selection.

Like simulated annealing, it is just a heuristic by can often find
high-quality solutions to complicated problems.
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In a nutshell, natural selection in most animals and plants involves the
following principles:

“Survival of the fittest”: organisms better suited to their environment
are more likely to reproduce.

Sexual reproduction: two organisms produce a new organism by
combining DNA from the parents.

Mutation: rare, random changes in a gene due to damaged DNA or a
copying error.

We want to search for good solutions to an optimization problem by
making an analogy to these principles.

Bilevel problems Genetic algorithms



In contrast to simulated annealing, which had just one current solution, in
genetic algorithms we maintain a population of many feasible solutions.

Furthermore, there will be multiple generations, each with their own
population of solutions.

Starting with an initial generation, we want to create a generation of
“offspring” which ideally have lower objective function values.
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We can adapt the principles of natural selection in the following way:

“Survival of the fittest”: solutions with lower objective function
values are more likely to “reproduce.”

Sexual reproduction: a new feasible solution is created by combining
aspects of two “parents.”

Mutation: rare, random changes in a solution.
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1 Generate an initial population of N feasible solutions (generation 0),
set generation counter g ← 0.

2 Create generation g + 1 in the following way, repeating each step N
times:

(a) Choose two “parent” solutions from generation g .
(b) Combine the two parent solutions to create a new solution.
(c) With probability p, mutate the new solution.

3 Increase g by 1 and return to step 2 unless done.
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How to generate an initial population?

It is more important for the initial population to be highly diverse than for
the initial solutions to have low objective function values.

(Genetic algorithms get most of their power from breeding solutions
together, mutation plays a secondary role.)

There is nothing wrong with randomly generating all of the initial solutions
(just make sure they are feasible).
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How to select parent solutions?

The tournament selection rule works like this: pick a tournament size t.

From the current generation, randomly select t solutions. The one with
the lowest objective function value is the first parent.

Repeat the tournament by selecting t more solutions randomly. The one
with the lowest objective function value is the second parent.
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How to “breed” solutions together?

This part can be trickier, and varies from one problem to the next. We
need to combine two feasible solutions in a way that results in a new
feasible solution that resembles its parents in some way.

For OD matrix estimation or network design, this could be the average of
the two parents.
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How to mutate solutions?

The same way as neighbors were generated in simulated annealing:
randomly change the solution in a minor way.
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