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We left one arrow undefined, the “assignment rule.” Dealing with this will
require the rest of the semester.

Path demands h Link demands x
x = h

Link travel times tPath travel times c
c = t

Link performance 
functions

Assignment
rule

Why do travelers choose the paths they do?
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USER EQUILIBRIUM



Assume that there are only two network links, and N vehicles traveling
from the origin to the destination.

1 2
N N
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If all drivers are choosing routes that minimize their delay, then exactly
one of the following cases must be true:

1 All drivers are on the top link, and t1(N) < t2(0).

2 All drivers are on the bottom link, and t2(N) < t1(0).

3 The two links have equal travel time t1(x1) = t2(x2)

Anything else is “unstable” and some drivers will switch routes.
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This can be generalized in the principle of user equilibrium:

For each origin and destination, all used routes between those nodes have
equal and minimal travel time.
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Note that this principle follows directly from the assumptions that drivers
choose minimum time paths, and are well-informed about network
conditions.

If you accept these assumptions, then you must also accept the principle of
user equilibrium.

Equivalently, if you disagree with the principle of user equilibrium, then
you must either believe that drivers do not choose minimum time paths, or
do not know the travel times on available paths.
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We can use this principle to solve for equilibrium on very simple networks.
If there are 30 vehicles choosing these routes, how many choose the top
route, and how many choose the bottom?

1 2
30

50

45+x

What do these link performance functions imply?
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25 choose the top route, 5 choose the bottom, and everybody has a travel
time of 50 minutes.

1 2
30

50

45+x
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Even with more complex functions we can apply a similar approach.

1 2
7000 7000

An equation solver may be needed in this case.
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A graphical method can be used when there are only 2 paths.

Route 1

Route 2
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This method can be generalized in any network with a single OD pair
(r , s):

1 Select a set of paths Π̂rs which you think will be used.

2 Write equations for the travel times of each path in Π̂rs as a function
of the path demands.

3 Solve the system of equations enforcing equal travel times on all of
these paths, together with the requirement that the total path
demands must equal the total demand d rs .

4 Verify that this set of paths is correct; if not, refine Π̂rs and return to
step 2.
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KNIGHT-PIGOU-DOWNS
PARADOX



Remember this network from the first example?

1 2
30

50

45+x

At equilibrium, 25 vehicles chose the top route, 5 chose the bottom, all
travel times are 50 minutes.
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Now, we improve the bottom link so that its cost function is now
40 + x/2. What happens to route choices now?

1 2
30

50

40+x/2

Why is changing the cost function in this way an “improvement”?
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10 vehicles choose the top route, 20 choose the bottom route, and
everybody has a travel time of 50 minutes.

1 2
30

50

40+x/2

Nobody has saved any time at all! What happened?
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BRAESS PARADOX



Consider the following network, with 6 vehicles traveling from node 1 to
node 4

1

2

3

4

50+x

50+x
10x

10x

What’s the equilibrium solution?
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Now, a third link is added to the network.

1

2

3

4

50+x

50+x

10+x

10x

10x

What happens now?
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What just happened?

Is the Braess paradox “realistic”?
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A few implications:

User equilibrium does not minimize congestion.

The “invisible hand” does not always function well in traffic networks.

There may be room for engineers and policy makers to “improve”
route choices.
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This suggests two possible traffic assignment rules:

User equilibrium (UE): Find a feasible assignment in which all used paths
have equal and minimal travel times.

System optimum (SO): Find a feasible assignment which minimizes the
total system travel time

TSTT =
∑

(i ,j)∈A

xij tij

When might each of these rules be used?

UE and SO Braess paradox



SMITH’S PARADOX



Assume there are two routes which merge at a signal-controlled junction,
with a 60-second cycle length.

1 235

Saturation flow 30

Saturation flow 60

The saturation flow is the maximum throughput on a link if it were given
100% green time.

UE and SO Smith’s paradox



From traffic engineering principles, we can estimate the signal delay on
each link in terms of its flow, and the percentage of green time:

ti = 1 +
9

20

[
C (1− Gi/C )2

1− xi/si
+

X 2
i

xi (1− Xi )

]

(To focus on the main issues, I will just present the results of the
calculations in this example, rather than going through this formula each
time.)
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Initially, the signal is timed so the top approach has 40 seconds of green,
and the bottom has 20 seconds.

With these values, the equilibrium solution is x↑ = 23.6 and x↓ = 11.4;
both approaches have a travel time of 2.11 minutes.

With these flow values, delay at the signal is minimized by adjusting the
green times to 48.3 and 11.7 seconds.

This changes the equilibrium solution. With the new delay functions,
the equilibrium is x↑ = 23.8 and x↓ = 11.2; both approaches have a travel
time of 2.26 minutes.

With these flow values, delay at the signal is minimized by adjusting the
green times to 48.5 and 11.5 seconds.
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As this process continues, delay continues to increase... at first slowly, and
then dramatically:

Iteration G ↑ (s) G ↓ x↑ (v/min) x↓ t↑ (min) t↓

0 48 12 23.6 11.4 2.11 2.11
1 48.3 11.7 23.8 11.2 2.26 2.26
2 48.5 11.5 23.9 11.1 2.43 2.43
3 48.7 11.3 24.1 10.9 2.63 2.63
4 48.9 11.1 24.2 10.8 2.86 2.86
5 49.1 10.9 24.3 10.7 3.12 3.12

10 49.5 10.5 24.7 10.3 5.11 5.11
20 49.88 10.12 24.91 10.09 16.58 16.58
50 49.998 10.002 24.998 10.002 855.92 855.93

∞ 50 10 25 10 ∞ ∞
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