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The “trial and error” method doesn’t work well for realistic-sized networks:

The Chicago regional network has 12982 nodes, 39018 links, and over
3 million OD pairs

The Philadelphia network has 13389 nodes, 40003 links, and over 2
million OD pairs

The Austin network has 7388 nodes, 18961 links, and around 1
million OD pairs.

Further, the number of paths in these networks is much, much larger.

You do not want a trial-and-error method for these networks. Later in the
class we’ll discuss methods which scale better.
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We will take a detour into optimization and other mathematical
techniques which help us formulate and solve traffic assignment on large
networks. If your multivariable calculus is a bit rusty, I’d advise reviewing
the following concepts (see Chapter 3 of the text):

Dot products and their geometric interpretation

First and second partial derivatives

The gradient vector

The Hessian matrix

Multivariate chain rule
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FIXED POINT PROBLEMS



There are three important questions you should be asking at this point:

Does a user equilibrium solution always exist?

If so, is the user equilibrium solution unique?

Is there any practical way to find an equilibrium in large networks?

To answer these questions, we’ll need some math. We will cover some basic
results from fixed point problems, variational inequalities, and optimization.
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In the last class, we interpreted user equilibrium as a “consistent” solution
to this loop.

Path demands h Link demands x
x = h

Link travel times tPath travel times c
c = t

Link performance 
functions

Assignment
rule

For example, if there was some function R(c) which gives the path flows
(route choice) as a function of path travel times, then we need to find h
such that h = R(C (t(x(h))))
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Consistency can be represented in a mathematical way:

+4 x4

8

Find a value which is unchanged when you go around the loop.
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A clever person can solve this type of problem by denoting the values in
the boxes as x , y , and z .

+4 x4

8

We then have y = x + 4, z = 4y , and x = z/8. Substituting them into
each other, we have x = 1

2x + 2 or x = 4.
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A not-so-clever approach is to pick a starting value, then calculate through
the loop iteratively.

10 → 7 → 5.5 → 4.75 → 4.375 → . . . which converges to the correct
answer (4).

Picking a different starting value: 1 → 2.5 → 3.25 → 3.625 → . . . also
converges to the same answer.
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However, this simple approach won’t always work.

-4 x4

2
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Choosing the same starting value, we have 10 → 12 → 16 → 24 → 40
→ . . . which diverges to +∞.

The clever approach still works: y = x − 4, z = 4y , and x = z/2, so
x = 2x − 8 and x = 8. If we used this as our starting value, the simple
approach would work, but for any other value it will diverge.
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This is an example of a fixed point problem. The more general definition is
given below:

Consider some set X and a function f whose domain is X and whose range
is contained in X . A fixed point of f is a value x ∈ X such that x = f (x).

(Note: it is critical that the function’s range be contained in its domain.
A fixed point problem does not make sense unless this is true.)

Fixed point theorems give us conditions on X and f which guarantee that
a fixed point exists — for us, this will tell us when we known an
equilibrium solution exists.
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Brouwer’s Theorem

If X is a compact convex set and f is a continuous function, then f has at
least one fixed point.

This theorem is a bit frustrating in that it does give us any clue as to how
to find this fixed point! But it must exist somewhere.
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Mathematical definitions...

A set is compact if it is closed and bounded.

A set is closed if it contains all of its boundary points.

A set is bounded if it can be contained by a sufficiently large ball.

A set is convex if the line connecting any two points in the set lies within
the set as well (x ∈ X and y ∈ X imply λx + (1− λ)y ∈ X for all
λ ∈ [0, 1])

A function is continuous if at all points y ∈ X , limx→y f (x) exists and is
equal to f (y).
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To visualize the concept of fixed points, assume that X = [0, 1].

A fixed point is anywhere f (x) crosses the diagonal line y = x

One of the homework problems asks you to show that all of the conditions
(closed, bounded, convex, continuous) are necessary for a fixed point to
exist.
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Application to traffic assignment

Does the traffic assignment problem satisfy the conditions of Brouwer’s
theorem?

Let H be the set of all feasible path flows. H is closed, bounded, and
convex.

But what should f : H → H be? If paths are “tied” in travel time, then
R(C ) can take infinitely many values.

If we stick with the fixed point approach, we can still make things work
but we need to appeal to Kakutani’s theorem instead.

Another approach, which is more useful for visualizing equilibrium
problems, leads us to the variational inequality.
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VARIATIONAL
INEQUALITY



What does the set H look like in this example?

1 2
30

50

45+x

For each point h in H, associate a direction vector −c(h).
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Think about this direction as a “force” which is pulling travelers
(represented by the path flow vector) toward lower-cost alternatives (while
staying within the feasible set).

Is there any point which is “stable” with respect to this force?

This force is not a physical force, and is primarily a device that will let us
formulate the equilibrium problem. You can think of it is as a tendency for
travelers to move toward lower-cost paths.
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What if the problem is changed slightly?

1 2
30

100

45+x
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What does H look like for larger problems?
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In all of these cases, for a point ĥ to be stable, the force −c(ĥ) cannot
have any positive component in a direction which stays in H.

Geometrically, this means that −c(ĥ) cannot make an acute angle with
any vector h− ĥ when h ∈ H.

Equivalently, −c(ĥ) · (h− ĥ) ≤ 0 or c(ĥ) · (ĥ− h) ≤ 0 for all h ∈ H.

This is a variational inequality: find ĥ ∈ H such that c(ĥ) · (ĥ− h) ≤ 0 for
all h ∈ H
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The interpretation in terms of forces is intuitive; people want to move to
lower cost paths, and an equilibrium is a “stable” point where nobody can
reduce their travel times further.

Can we connect it with the principle of user equilibrium? That is, are the
stable points of this system path flows where all used paths have equal
and minimal travel times?
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Theorem: ĥ solves the variational inequality c(ĥ) · (ĥ− h) ≤ 0 for all
h ∈ H iff ĥ satisfies the principle of user equilibrium.

Part I: ĥ solves the VI if ĥ is a user equilibrium.

The VI can be rewritten c(ĥ) · ĥ ≤ c(ĥ) · h.

The left hand side is another way to write TSTT at ĥ: c(ĥ) · ĥ

The right hand side would give the TSTT at h if the travel times were
constant at the values corresponding to ĥ.

Since ĥ is UE, the only paths with positive hπ values have the least travel
time out of all paths for that OD pair. So if the travel times stay constant,
no matter what h is, the TSTT cannot be lower at h than at ĥ. Thus ĥ
solves the VI.
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Theorem: ĥ solves the variational inequality c(ĥ) · (ĥ− h) ≤ 0 for all
h ∈ H iff ĥ satisfies the principle of user equilibrium.

Part II: ĥ solves the VI only if ĥ is a user equilibrium.

If ĥ solves the VI, then if the travel times were held fixed, any other path
flows ĥ would result in an equal or greater TSTT. This can only happen if
the only used paths have equal and minimal travel time.
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Existence

We are now in a position to use Brouwer’s theorem. H is closed, bounded,
and convex. We can define f : H → H as follows:

Let f (h) be the location of the point (h after acted on by the force −c(h)
for a short period of time: f (h) = projH(h− c(h)) where projH means
projection onto the feasible set H. If c is continuous, so is f (h).

If ĥ solves the VI, then the point is unmoved by this force and ĥ = f (ĥ),
that is, it is a fixed point of f .

Brouwer’s theorem guarantees at least one fixed point of f , which is a
solution of the VI, and which therefore satisfies the principle of user
equilibrium.
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OPTIMIZATION
TECHNIQUES



You’ve seen some simple optimization problems before, in calculus:

“You have 60 ft of fencing. How can you use this fencing to enclose the
largest possible rectangular area?”

There are much larger optimization problems which are used in many
fields:

“You have $5 million to spend on pavement maintenance this year. Which
maintenance actions should you perform on what roadway segments to
maximize pavement condition for travelers?”
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Why are we going in this direction?

Researchers have developed efficient methods for solving large-scale opti-
mization problems with tens of thousands and even millions of variables. If
we can reframe traffic assignment on a network as an optimization problem,
we can use these methods as well.

These slides give an introduction and some highlights from the art of
optimization. We’ll shortly show how traffic assignment can fit into this
framework.
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Every optimization problem has three components:

Objective function: What are you trying to maximize or minimize?

Decision variables: What aspects of the problem can you control, both
directly and indirectly?

Constraints: What restrictions are there on the possible values of the
decision variables?
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Example: You have 60 ft of fencing. How can you use this fencing to
enclose the largest possible rectangular area?
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Example: You are a private toll road operator. What toll should you
charge to maximize your profit?

Math techniques Optimization techniques



Optimization problems are often written in the following form:

min
x

f (x)

s.t. Constraint1

...

Constraintm

where x is a vector containing all of the decision variables. We often use X
to denote the feasible region for the problem, that is, the set of x values
which satisfy all of the constraints.
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Some functions are easier to optimize than others. Set and function
convexity play a very important role in determining which optimization
problems are easier to solve.
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FUNCTION CONVEXITY



Consider a function f (x) of one variable, whose domain X is a convex set.

Geometrically, this function is convex if it “lies below its secants”

Mathematically, f is convex if, for every x1 ∈ X and x2 ∈ X , and for every
λ ∈ [0, 1], we have

f (λx2 + (1− λ)x1) ≤ λf (x2) + (1− λ)f (x1)

Furthermore, if f is differentiable, a function is convex iff it “lies above its
tangents”:

f (x2) ≥ f (x1) + f ′(x1)(x2 − x1)

Furthermore, if f is twice differentiable, a function is convex iff

f ′′(x) ≥ 0

for all x ∈ X

A function is strictly convex if these inequalities can be made strict.
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Examples

Which of the following functions are convex? Strictly convex? (Assume
their domain is convex.)

1 f (x) = x2

2 f (x) = 3x

3 f (x) = sin x

4 f (x) = |x |
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When f is a function of multiple variables, the convexity conditions
involving first and second derivatives must change.

The analogue of the first derivative is the gradient vector

∇f =
[
∂f /∂x1 ∂f /∂x2 · · · ∂f /∂xn

]T
The analogue of the second derivative is the Hessian matrix

Hf =


∂2f /∂x21 ∂2f /∂x1∂x2 · · · ∂2f /∂x1xn

∂2f /∂x2∂x1 ∂2f /∂x22 · · · ∂2f /∂x2xn
...

...
. . .

...
∂2f /∂xn∂x1 ∂2f /∂xn∂x2 · · · ∂2f /∂x2n


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For twice-differentiable multidimensional functions, f is convex if any of
these equivalent conditions are satisfied:

1. For all x1 and x2 in X ,

f (λx2 + (1− λ)x1) ≤ λf (x2) + (1− λ)f (x1)

2. For all x1 and x2 in X ,

f (x2) ≥ f (x1) +∇f (x1)T (x2 − x1)

3. For all x in X , H(x) is positive semidefinite (that is, yTH(x)y ≥ 0 for
all vectors y).
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For twice-differentiable multidimensional functions, f is strictly convex if
any of these conditions are satisfied:

1. For all x1 and x2 in X ,

f (λx2 + (1− λ)x1) < λf (x2) + (1− λ)f (x1)

2. For all x1 and x2 in X ,

f (x2) > f (x1) +∇f (x1)T (x2 − x1)

3. Hf is positive definite (that is, yTH(x)y > 0 for all nonzero vectors
y).
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Checking whether a matrix is positive definite or positive semidefinite can
be tedious. In this class, though, many of the Hessians we will see are
diagonal matrices. In this case, it’s much easier to check:

A diagonal matrix is positive semidefinite iff all of its diagonal entries are
nonnegative; a diagonal matrix is positive definite iff all of its diagonal
entries are strictly positive.
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Example

Which of these functions are convex? strictly convex?

1 5x21 + 2x22
2 6x3 + 4y2

3 2x21 − 2x22
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CONVEX OPTIMIZATION



If the objective is a convex function, and the feasible region is a convex
set, the following hold true:

If x is a local minimum, it is also a global minimum.

(Uniqueness.) If f is strictly convex, the global minimum is unique.

(Connectedness.) The set of global minima is a convex set.

From here on out, we will assume that the objective function is convex
(but not necessarily strictly convex)
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ONE-DIMENSIONAL
OPTIMIZATION



If there are no constraints and a single variable, min f (x) is easy to solve if
f is differentiable.

Set f ′(x) = 0 and solve for x .

Since f is convex we don’t have to check whether this point is a minimum
or a maximum, local or global, etc.
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What happens if there is a nonnegativity constraint: min f (x) such that
x ≥ 0

There are two possibilities:

x ≥ 0 and f ′(x) = 0 (same as before, just checking that x is feasible)

x = 0 and f ′(x) ≥ 0 (the optimal point is at x = 0)

We want to summarize these conditions with equations. We need both x
and f ′(x) to be nonnegative, but at least one of them must be zero.
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The following equations do this:

x ≥ 0

f ′(x) ≥ 0

xf ′(x) = 0

These are called the optimality conditions for the problem. If we can find a
value of x that satisfies all three conditions, it is the optimal solution.
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Example

Minimize f (x) = x2 + 3x + 5 such that x ≥ 0
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MULTIPLE NONNEGATIVE
VARIABLES



What if there is more than one decision variable, all of which must be
nonnegative?

min
x

f (x)

s.t. x ≥ 0
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Using the same logic as before, we can derive the following optimality
conditions which must hold for every decision variable xi :

xi ≥ 0

∂f (x)

∂xi
≥ 0

xi
∂f (x)

∂xi
= 0

This can be compactly written as

0 ≤ x ⊥ ∇f (x) ≥ 0
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Example

Minimize f (x1, x2) = x21 + x22 + 3x1 − 3x2 + 5 such that x1, x2 ≥ 0
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LINEAR EQUALITY
CONSTRAINTS



Now, assume we have an optimization problem with multiple variables, a
linear equality constraint, but no nonnegativity constraint.

An example is
min
x1,x2

x21 + x22

s.t. x1 + x2 = 5

The technique of Lagrange multipliers can solve this problem.
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The Lagrangian function L includes the original objective function, and a
term for each constraint.

L(x1, x2, κ) = x21 + x22 + κ(5− x1 − x2)

where the new variable κ is a Lagrange multiplier.

You can think of the new term in the Lagrangian function as a “penalty”
for violating the constraint.

The optimal solution of the original problem is a stationary point of the
Lagrangian, that is, a place where ∇L is zero.
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Example

min
x1,x2

x21 + x22

s.t. x1 + x2 = 5
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What if we have both linear equality constraints and nonnegativity
constraints on each variable?

min
x1,...,xn

f (x1, . . . , xn)

s.t.
∑n

i=1 a1ixi = b1∑n
i=1 a2ixi = b2

...∑n
i=1 amixi = bm
x1, . . . , xn ≥ 0

The Lagrangian function contains a multiplier and term for each constraint

L(x1, . . . , xn, κ1, . . . , κm) = f (x1, . . . , xn) + κ1

b1 −
n∑

j=1

a1jxj

+

κ2

b2 −
n∑

j=1

a2jxj

+ · · ·+ κm

bm −
n∑

j=1

amjxj


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We combine the Lagrangian approach with the optimality conditions from
before, to obtain

∂L
∂xi
≥ 0 ∀i ∈ {1, . . . , n}

∂L
∂κj

= 0 ∀j ∈ {1, . . . ,m}

xi ≥ 0 ∀i ∈ {1, . . . , n}

xi
∂L
∂xi

= 0 ∀i ∈ {1, . . . , n}

as the optimality conditions.
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