Shortest Paths on a Network

CE 392C

We already know how to calculate path travel times from path flows (step $1)$; let's now focus on step 2.

SHORTEST PATH CONCEPTS

This is commonly known as the shortest path problem. With modern computers, it's possible to find shortest paths in a fraction of a second, even for large networks.

In a shortest path problem, we are given a network $G=(N, A)$ in which each link has a fixed cost $t_{i j}$, an origin r, and a destination s. The goal is to find the path in G from r to s with minimum travel time.

To find this path efficiently, we need to avoid enumerating every possible path.

One odd twist of shortest path problems: it's not much harder to find the shortest path from r to s than to find many shortest paths at the same time. Two broad approaches:
One-to-all: Find the shortest paths from node r to all destination nodes.
All-to-one: Find the shortest paths from all origin nodes to node s.

For the purposes of this course, either will work. For clarity, we'll stick with one-to-all shortest paths.

One-to-all shortest path relies on Bellman's Principle, which lets us re-use information between different origins and destinations:

If $\pi^{*}=\left[r, i_{1}, i_{2}, \ldots, i_{n}, s\right]$ is a shortest path from r to s, then the subpath $\left[r, i_{1}, \ldots, i_{k}\right]$ is a shortest path from r to i_{k}

The upshot: we don't have to consider the entire route from s to d at once. Instead, we can break it up into smaller, easier problems. (This is why the "one-to-all" problem is no harder than the "one-to-one" problem.)

Why does Bellman's principle hold?

If there is a shorter path from r to i_{k}, I could "splice" that into π^{*} and obtain a shorter path from r to s.

A compact way to store all of the shortest paths from r to every other node is to maintain two labels L_{i}^{r} and q_{i}^{r} for each node.

- L_{i}^{r} is the cost label, giving the travel time on the shortest known path from r to i.
- q_{i}^{r} is the backnode label, which specifies the previous node on the shortest known path from r to i.

By convention, $L_{r}^{r}=0$ and $q_{r}^{r}=-1 ; L_{i}^{r}=\infty$ and $q_{i}^{r}=-1$ if we haven't yet found any path from r to i

SHORTEST PATHS IN ACYCLIC NETWORKS

In acyclic networks, Bellman's principle leads directly to an easy solution method.

Why acyclic networks? First, they're simpler and faster, and make a good first illustration. Second, many advanced traffic assignment algorithms operate by splitting a network into acyclic portions and using the easy method.

A defining characteristic of acyclic networks is the existence of a topological order - the nodes can be labeled from 1 to n in a way that every link connects a lower-label node to a higher-label one.

Theorem. A network has a topological order iff it is acyclic. Proof. An exercise for you.

To find the shortest path from the origin r to all nodes, simply proceed in topological order and apply Bellman's principle:
(1) Initialize by setting $L_{i}^{r}=\infty$ and $q_{i}^{r} \forall i \in N$, and set $L_{r}^{r}=0$
(2) Let i be the node topologically following r.
(3) By this point, we have found the shortest path from r to all nodes topologically before i)
(9) Find the best path from r to i by looking at each of the tail nodes one could arrive from:

$$
\begin{gathered}
L_{i}^{r}=\min _{(h, i) \in A}\left\{L_{h}^{r}+t_{h i}\right\} \\
q_{i}^{r}=\arg \min _{(h, i) \in A}\left\{L_{h}^{r}+t_{h i}\right\}
\end{gathered}
$$

(3) Is i the last node topologically? If so, stop. Otherwise, let i be the next node topologically and return to step 3.

Example

SHORTEST PATHS ON NETWORKS WITH CYCLES

If the network has cycles, there is no topological order and a different approach is needed.

Instead of scanning nodes in a predetermined order, fan out from the origin one node at a time.

Because of cycles, a node may be scanned more than once.

We maintain a scan eligible list SEL of nodes which still need to be scanned before we are sure all shortest paths have been found.
(1) Initialize by setting $L_{i}^{r}=\infty$ and $q_{i}^{r} \forall i \in N$, and set $L_{r}^{r}=0$
(2) Initialize $S E L$ to contain all nodes adjacent to the origin: $S E L \leftarrow\{i:(r, i) \in A\}$
(3) Choose a node $i \in S E L$ and remove it from that list.
(9) Scan node i as before:

$$
\begin{gathered}
L_{i}^{r}=\min _{(h, i) \in A}\left\{L_{h}^{r}+t_{h i}\right\} \\
q_{i}^{r}=\arg \min _{(h, i) \in A}\left\{L_{h}^{r}+t_{h i}\right\}
\end{gathered}
$$

(6) If the previous step changed the value of L_{i}^{r}, then add all nodes immediately downstream of i to $S E L$:

$$
S E L \leftarrow S E L \cup\{j:(i, j) \in A\}
$$

(0) If $S E L$ is empty, then terminate. Otherwise, return to step 3.

Example

All-or-nothing assignment

An all-or-nothing assignment is a feasible path flow vector \mathbf{h}^{*} which has positive flow only for paths with minimum travel time between their OD pair.

The difference between an all-or-nothing assignment and an equilibrium is that the path travel times \mathbf{c} do not need to correspond to the path flows \mathbf{h}^{*}. (Think about this in the iterative framework: the all-or-nothing assignment corresponds to the path travel times from the current path flows.)

You can think of this as a "target" path flow vector indicating how people would choose paths if the travel times were fixed at their current value.

If there is a tie for an OD pair, you can assign vehicles to any or all of the shortest paths arbitrarily.

The all-or-nothing assignment can also be written in terms of the corresponding link flows \mathbf{x}^{*}. (This saves memory, in large networks there are many more paths than links.)

Given \mathbf{h}^{*}, how can we find $\mathbf{x} *$?

Slow way: directly calculate the sum $x_{i j}^{*}=\sum_{r \in Z} \sum_{s \in Z} \sum_{\pi \in \Pi^{r s}} \delta_{i j}^{\pi} h_{\pi}^{*}$

Medium way: don't sum over all paths, just the one path in h^{*} for each OD pair.

Fast way: use backnodes to avoid having to "sum" over $\delta_{i j}^{\pi}$ terms which are zero.

Really fast way: ????? (see Exercise 4.17; think Bellman's principle and acyclic subnetworks)

