
Shortest Paths on a Network

CE 392C

Shortest paths



1. Calculate path
travel times 2. Find shortest paths

3. Adjust path choices
toward equilibrium

We already know how to calculate path travel times from path flows (step
1); let’s now focus on step 2.

Shortest paths



SHORTEST PATH
CONCEPTS



This is commonly known as the shortest path problem. With modern
computers, it’s possible to find shortest paths in a fraction of a second,
even for large networks.

In a shortest path problem, we are given a network G = (N,A) in which
each link has a fixed cost tij , an origin r , and a destination s. The goal is
to find the path in G from r to s with minimum travel time.

To find this path efficiently, we need to avoid enumerating every possible
path.

Shortest paths Shortest path concepts



One odd twist of shortest path problems: it’s not much harder to find the
shortest path from r to s than to find many shortest paths at the same
time. Two broad approaches:

One-to-all: Find the shortest paths from node r to all destination nodes.

All-to-one: Find the shortest paths from all origin nodes to node s.

For the purposes of this course, either will work. For clarity, we’ll stick with
one-to-all shortest paths.

Shortest paths Shortest path concepts



One-to-all shortest path relies on Bellman’s Principle, which lets us
re-use information between different origins and destinations:

If π∗ = [r , i1, i2, . . . , in, s] is a shortest path from r to s, then the subpath
[r , i1, . . . , ik ] is a shortest path from r to ik

The upshot: we don’t have to consider the entire route from s to d at
once. Instead, we can break it up into smaller, easier problems. (This is
why the “one-to-all” problem is no harder than the “one-to-one” problem.)

Shortest paths Shortest path concepts



Why does Bellman’s principle hold?

s

i1

i2

d

If there is a shorter path from r to ik , I could “splice” that into π∗ and
obtain a shorter path from r to s.

Shortest paths Shortest path concepts



A compact way to store all of the shortest paths from r to every other
node is to maintain two labels Lr

i and qr
i for each node.

Lr
i is the cost label, giving the travel time on the shortest known path

from r to i .

qr
i is the backnode label, which specifies the previous node on the

shortest known path from r to i .

By convention, Lr
r = 0 and qr

r = −1; Lr
i = ∞ and qr

i = −1 if we haven’t
yet found any path from r to i

Shortest paths Shortest path concepts



SHORTEST PATHS IN
ACYCLIC NETWORKS



In acyclic networks, Bellman’s principle leads directly to an easy solution
method.

Why acyclic networks? First, they’re simpler and faster, and make a good
first illustration. Second, many advanced traffic assignment algorithms op-
erate by splitting a network into acyclic portions and using the easy method.

Shortest paths Shortest paths in acyclic networks



A defining characteristic of acyclic networks is the existence of a
topological order — the nodes can be labeled from 1 to n in a way that
every link connects a lower-label node to a higher-label one.

Theorem. A network has a topological order iff it is acyclic.
Proof. An exercise for you.

Shortest paths Shortest paths in acyclic networks



To find the shortest path from the origin r to all nodes, simply proceed in
topological order and apply Bellman’s principle:

1 Initialize by setting Lr
i =∞ and qr

i ∀i ∈ N, and set Lr
r = 0

2 Let i be the node topologically following r .

3 (By this point, we have found the shortest path from r to all nodes
topologically before i)

4 Find the best path from r to i by looking at each of the tail nodes
one could arrive from:

Lr
i = min

(h,i)∈A
{Lr

h + thi}

qr
i = arg min

(h,i)∈A
{Lr

h + thi}

5 Is i the last node topologically? If so, stop. Otherwise, let i be the
next node topologically and return to step 3.

Shortest paths Shortest paths in acyclic networks



Example

1

2

3

4

5
2

2
4

1

Shortest paths Shortest paths in acyclic networks



SHORTEST PATHS ON
NETWORKS WITH CYCLES



If the network has cycles, there is no topological order and a different
approach is needed.

Instead of scanning nodes in a predetermined order, fan out from the
origin one node at a time.

Because of cycles, a node may be scanned more than once.

We maintain a scan eligible list SEL of nodes which still need to be
scanned before we are sure all shortest paths have been found.

Shortest paths Shortest paths on networks with cycles



1 Initialize by setting Lr
i =∞ and qr

i ∀i ∈ N, and set Lr
r = 0

2 Initialize SEL to contain all nodes adjacent to the origin:
SEL← {i : (r , i) ∈ A}

3 Choose a node i ∈ SEL and remove it from that list.

4 Scan node i as before:

Lr
i = min

(h,i)∈A
{Lr

h + thi}

qr
i = arg min

(h,i)∈A
{Lr

h + thi}

5 If the previous step changed the value of Lr
i , then add all nodes

immediately downstream of i to SEL:

SEL← SEL ∪ {j : (i , j) ∈ A}

6 If SEL is empty, then terminate. Otherwise, return to step 3.

Shortest paths Shortest paths on networks with cycles



Example

1

2

3

4

5
2

2
4

1

Shortest paths Shortest paths on networks with cycles



All-or-nothing assignment

An all-or-nothing assignment is a feasible path flow vector h∗ which has
positive flow only for paths with minimum travel time between their OD
pair.

The difference between an all-or-nothing assignment and an equilibrium is
that the path travel times c do not need to correspond to the path flows
h∗. (Think about this in the iterative framework: the all-or-nothing
assignment corresponds to the path travel times from the current path
flows.)

You can think of this as a “target” path flow vector indicating how people
would choose paths if the travel times were fixed at their current value.

If there is a tie for an OD pair, you can assign vehicles to any or all of the
shortest paths arbitrarily.

Shortest paths Shortest paths on networks with cycles



The all-or-nothing assignment can also be written in terms of the
corresponding link flows x∗. (This saves memory, in large networks there
are many more paths than links.)

Given h∗, how can we find x∗?

Shortest paths Shortest paths on networks with cycles



Slow way: directly calculate the sum x∗ij =
∑

r∈Z
∑

s∈Z
∑

π∈Πrs δπij h
∗
π

Shortest paths Shortest paths on networks with cycles



Medium way: don’t sum over all paths, just the one path in h∗ for each
OD pair.

Shortest paths Shortest paths on networks with cycles



Fast way: use backnodes to avoid having to “sum” over δπij terms which
are zero.

Shortest paths Shortest paths on networks with cycles



Really fast way: ????? (see Exercise 4.17; think Bellman’s principle and
acyclic subnetworks)

Shortest paths Shortest paths on networks with cycles


	Shortest path concepts
	Shortest paths in acyclic networks
	Shortest paths on networks with cycles
	Frank-Wolfe

