Beckmann's formulation, MSA, and Frank-Wolfe
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1. Calculate path

travel times 2. Find shortest paths

We're now done with steps 1 and 2; how can we shift flows to shortest
paths (step 3)?
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OUTLINE



@ System optimal as optimization
@ User equilibrium as optimization
© Method of successive averages
@ Frank-Wolfe algorithm
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SYSTEM OPTIMAL
ASSIGNMENT



Can we formulate the system optimum problem as an optimization
problem?

What are the objective function, decision variables, and constraints?

First practical methods System Optimal Assignment



There are a few ways to do this; one is include two types of decision
variables: the link flows x;;, and the path flows h”.

The objective function is to minimize the total system travel time

> Xijtii(Xij)

There are two types of constraints: (1) the path flows must be a feasible
assignment; (2) the link flows must be consistent with the path flows:

Q@ >0 Vel (obviously can't have a negative path flow)
Q> . cnsh"=d"” Y(r,s) € Z? (no vehicle left behind)
Q xj=>_,nd;h" (link flows consistent with path flows)
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Then, the SO optimization problem is

min Z t,'j(X,'j)X,'j

)

(ij)EA
st xj= Y OFh" V(i,j) € A
wel
d*= > h Y(r,s) € Z2
wellrs
A™ >0 Vr el
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USER EQUILIBRIUM
ASSIGNMENT



What should the objective be for user equilibrium assignment?

The answer isn't obvious; it turns out that the Beckmann function

Z /OXU tij(x)dx

(iJ)eA

is the appropriate one.

To see why, we need to look at the optimality conditions using this
objective function.
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This formulation comes from the seminal book Studies in the Economics
of Transportation by Martin Beckmann, C. B. McGuire, and Christopher
Winsten.

STUDIES IN
THE ECONOMICS OF |
TRANSFORTATION

b MARTIN BICKMANN
3 MaUTRE
CHRISTOMER 3, WINHTEN
Gondain s TIALLING  KETMANS.

Sl oy COWLES FOUNDATIRS
2 Han ot
i

This book was published in 1956 and was the starting point for
transportation network analysis as used today.
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Consider the optimization problem

d*= > h Y(r,s) € Z2

What are the optimality conditions?
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After some simplification, these reduce to

A™ >0 Vr el
™ > Krs Y(r,s) € Z?
h"(c™ — Krs) =0 Vrell

where the ks in the third constraint corresponds to the OD pair connected
by 7.

The first condition is nonnegative path flows.

The second condition shows that x,s is the shortest path travel time
between r and s

The third condition shows that if a path is used (h™ > 0) its travel time
must be equal to k,s.

This is a case where the objective function was determined by working
backward from the optimality conditions. J

First practical methods



Furthermore, the Beckmann function is strictly convex in the link flows x if
the link performance functions are increasing.

Therefore, the user equilibrium solution is unique in link flows.
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ITERATIVE FRAMEWORK



1. Calculate path

L 2. Find shortest paths
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So, this suggests one specific implementation of the iterative framework:

@ Start with some feasible link flow solution x. (Working with h is too
unwieldy for large networks.)

@ Calculate the link travel times using the flows x.
© Find the shortest paths between all origins and destinations
o

Find the all-or-nothing link flows x* corresponding to these shortest
paths.

© Choose A € [0, 1] and update x <= Ax* + (1 — A\)x
Q If “close enough to equilibrium” stop, otherwise return to step 2.

There are two things in things in this algorithm which should look a little
bit “fuzzy” to you. J
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@ How do we know when we are “close enough to equilibrium?”

@ How do we choose \?

We'll tackle this questions in order.
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TERMINATION CRITERIA



Can we stop when the link flows aren’t changing much anymore?
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It's always best to measure convergence based on consistency with the
equilibrium condition.

Most of these ideas compare two values: the total system travel time
TSTT and the shortest path travel time SPTT

We've already defined TSTT as ) tjj(x;)xj. SPTT can be defined as
>_ij tii(xi)x;; where x* is an assignment of all vehicles to shortest paths
using the travel times t;;(x;).

SPTT can also be written as 3, .72 d™k".

The key point: at an equilibrium solution, TSTT = SPTT, and at a
nonequilibrium solution TSTT > SPTT. (This follows from the varia-
tional inequality formulation.) So, the “gap” between these tells us how
close we are
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The most common gap measure in use today is the relative gap

_TSTT

1= ST

(Unfortunately, the term has been given slightly different meanings by

different authors, and it's hard to describe what the relative gap means in
real-world terms.)
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The average excess cost is

TSTT — SPTT
> s d

that is, a normalized gap measure showing how much longer the average
vehicle's trip is than the shortest path available.

AEC =
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METHOD OF SUCCESSIVE
AVERAGES



How do we choose A7

There are two ways to go wrong. If A is “too big”, then we are
overcorrecting (and may oscillate endlessly).

If Xis “too small”, then it will take a very long time to finish (if at all).
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The method of successive averages tries to prevent both problems by
starting with large A\ values and moving to smaller ones.

If A\; is the step size for the i-th iteration, {\;} = {1/2,1/3,1/4,1/5,...}.

We can choose other patterns for the step sizes, but will require
Y Ai=o00and Y A? < co. (Why?)
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Example

50+x 10x

10x
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FRANK-WOLFE



The Frank-Wolfe algorithm tries to choose A more intelligently: at each
iteration, A is chosen to get as close to equilibrium as possible along the
line connecting x to x*.

This is done by solving a “restricted” VI where the feasible set X is the line
segment between x and x* and the force points in the direction of —t(x).

That is, X consists of all vectors of the form Ax + (1 — \)x* for all
A€ [0,1].

The Vlis: find & such that t(X) - (X —x’) <0 for all x' € X.
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How does this VI in the “link-flows” x relate to the VI we previously saw in
the path flows h?

They are actually the same, and the proof is very simple using the matrix
version of the link-path relationships. Remember x = Ah and ¢ = ATt,
and also remember that an inner product u - v can also be written as as
the matrix product u’v.

c(h*)"(h* —h)
(ATt(x*))T(h* — h)
(t(x*))" (Ah* — Ah)
t(x*) - (x* —x)

c(h*) - (h* — h)
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What does the solution to this VI look like? The set X has two endpoints;
for now assume that the solution to the VI is not at one of these points.
(Is this a safe assumption?)

Then at the solution to the VI X, the force vector —t(X) is perpendicular
to the direction x* — x.

That is, —t(X) - (x* —x) = 0.
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Writing this out in terms of individual components, the solution happens if
> ti (%) (x < XU) = 0 or equivalently

Z tij (XU Z tij (Xij) Xij

You can think of X as a “balance point” between the current solution x
and the target solution x*: if the travel times were based on the flows %,
the points x and x* look equally attractive.

How can we find this balance point? )
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It is also possible to show that the value of A solving the restricted
variational inequality also minimizes the Beckmann function along the line

segment between x and x*.

Write f(x())) to denote the value of the Beckmann function at the new
link flows corresponding to A.

We can show that df
T HGeG -
(ij)EA

which equals zero if

y

Dtk = > ti(%5)x
i
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Method 1: Bisection

@ Set the boundarieson A\: Ay =0, Ay =1
@ Pick A < (Ao + Api)/2 as the midpoint.
© Evaluate the equation at the midpoint:

@ Let X+ Mx*+ (1 —N)x

@ Then the equation is Y- t;(%;) (X — x;)

@ If the equation is negative, set \j, < .
@ If the equation is positive, set Ap; < A.

@ If Ay and \j, are sufficiently close (or if the equation is sufficiently
close to zero), terminate. Otherwise return to step 2.
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Method 2: Newton's method

© Choose some initial value of A
@ Evaluate the equation and its derivative with respect to A at the
midpoint:

O Let X+ MAx*+(1—MN)x

@ Letf = ZU tu()aj) (X,j< — X,'j)

A\ (o 2

© Let f' =3, ti(x)) (x5 — %)
Update A < A — f/f’
If X falls outside of [0,1] “project” it onto that set.

© 00

If the equation is sufficiently close to zero (or we have hit the same
endpoint twice in a row), terminate. Otherwise return to step 2.

Do we have to worry about dividing by zero?
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Newton's method usually requires fewer iterations, but requires more
calculation at each iteration. Both of them are easy to program.
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Example

50+x 10x

10x
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If you're solving by hand, the Frank-Wolfe method can be a bit tedious.
However, with the help of a spreadsheet or some simple code, you can
automate the tedious parts.
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