Equilibrium with link interactions
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Link interactions



So far we have assumed that the travel time on a link is solely a function
of that link’s flow: t;(x;)

In reality, a link's travel time may depend on other links’ flow as well:
@ Highways where overtaking is allowed
o Merges

@ Queues spilling back
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The second extension we are seeing to TAP allows these types of
interactions to occur.

We're going back to the fixed demand problem; in Act Il of the class we
are not “stacking” the extensions to TAP. Might make an interesting course
project, though.

Now, each link’s travel time can depend on the flows on other links:
ti(---, xjj, - ). More compactly we can write t;j(x) as a function of the
entire vector of link flows.
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Everything else is the same as in the beginning: fixed demand, we seek a
solution satisfying the principle of user equilibrium.

Obvious question: can we just modify the Beckmann function in some
way?

Other questions: can we still guarantee existence and uniqueness of
equilibrium solutions?
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The Beckmann function is

Z /OXU tii(x) dx
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Can we just replace the upper limit of integration x;; with x, and integrate
from the origin 0 to x?

This would turn the regular integral into a line integral. However, line
integrals generally depend on the path taken between the start and
endpoints... so, the Beckmann function is no longer well-defined.
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There is one special exception. This line integral is path-independent if
t(x) is a conservative vector field.

For this to happen, we need the following symmetry condition:

For any feasible x and any two links (/, /) and (k, ¢)
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In this case, the Beckmann function is well-defined and all of the previous
results hold.

However, in most cases the symmetric assumption is not reasonable to
take. (Why?)
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In the asymmetric case, the equilibrium problem cannot be formulated as
the solution to a convex optimization problem.

However, the variational inequality approach still works, and equilibrium
path flows h still satisfy

c(h)- (h—h)<0

for all h € H or equivalently equilibrium link flows X satisfy
t(x)- (x—x) <0

for all x € X.

This is a general pattern: even if we can't write down a convex optimization
problem, we can often still write down a variational inequality. Vls are a
more general modeling technique, but this generality has a cost.
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EXAMPLES
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In this network, each link has a free-flow time of 1 unit and demand is
1800 vehicles.

The bottom path is shorter, but must yield to traffic on the top path.

The link performance functions for all links are constant (1) except for the

yield link which depends on both the flow on its own link as well as on the
link it yields to.

Don't worry about the exact equation for this formula, it comes from “gap
acceptance” concepts.
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There are three equilibrium solutions. Which is likely to occur?

Only two of the three are “stable” to small changes in link flow.
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EXISTENCE



Does an equilibrium solution always exist?

Since the variational inequality is the same as before, as long as the link
performance functions are continuous, an equilibrium exists.
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MONOTONICITY AND
UNIQUENESS



Last class, we saw a case where three equilibria existed.

Can we describe why this happened mathematically?
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When we move flow from one path (say, h1) to another hy, intuitively the
difference in path costs ¢, — ¢1 should increase.

Let c(h) be the vector of path costs as a function of path flows.

This vector-valued function is strictly monotone if
(c(W) —c(h))- (W —h) >0 forall h#H.

Note: this is stronger than requiring that c(h) is increasing in each of the
path flows.
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If c(h) is strictly monotone, then the equilibrium solution is unique.

Let h be an equilibrium solution and let h be any other solution.

Then
c(h)(h — h) = (c(h) — c(h))(h — h) + c(h)(h — h) > c(h)(h —h) > 0, so
h is not an equilibrium.
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SIMPLICIAL
DECOMPOSITION
ALGORITHM



Simplicial decomposition is more sophisticated than convex combination
algorithms: rather than “forgetting” the x* vectors from previous
iterations, we will save them

The set X = {xj,x3,...,x;} stores the x* vectors from each iteration
(ignoring duplicates).
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Comparing simplicial decomposition and convex
combinations

Hj*

By combining multiple directions, simplicial decomposition can reach
equilibrium faster.
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Simplicial Decomposition Algorithm

This algorithm has two components: the master algorithm and a
subproblem

Master algorithm:

@ Initialize the set X « ()

@ Find shortest paths for all OD pairs.

© Form the all-or-nothing assignment x* based on shortest paths.
Q If x* is already in X, stop.

@ Add x* to X.

© Subproblem: Find a restricted equilibrium x using only the vectors in
X.

@ Return to step 2.
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Assuming we can solve the subproblem, this algorithm is guaranteed to
converge. Why?

There are only finitely many all-or-nothing assignments.

After each iteration, we add another vector to X.

Eventually, we'll have them all and the algorithm will terminate.
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Furthermore, when the algorithm terminates, we have found the
equilibrium. Why?

If the shortest paths with respect to x are already in X, then the restricted
equilibrium is also an unrestricted equilibrium.
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So, everything hinges on the subproblem: Find a solution to the variational
inequality when the feasible region is restricted to combinations of vectors
in X.

We can use Smith's algorithm to solve the subproblem.

Note: Smith's algorithm works whenever the link costs are monotone. This
holds when there are no link interactions, so it can be used for the basic
traffic assignment problem as well.
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To see how close we are to solving the restricted variational inequality,
define the Smith gap as follows:

This is similar to other gap measures (like v or AEC) in that it is zero only
if we are at restricted equilibrium, and positive otherwise. The Smith gap
s is helpful for proving convergence of Smith's algorithm.
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Smith's algorithm

Given a solution x, improve it in the following manner:
© Find an improvement direction Ax

@ Update x < x + pAx, where p is chosen such that ~ys is smaller after
the update.

If v is small enough, the new x will be feasible and s will be lower. Often
we test different values of p until we find a “successful” one, e.g., 1, 1/2,
1/4, etc.
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How do we find the improvement direction?

Seen [tX) - (x= %) (xF — %)
Saeen [H0) - (x=x)]"

is an improvement direction; a small enough step will reduce ~s.

Ax =

Proof: Smith, 1983.
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How many improvement directions do we take?

At some point, we stop finding improvement directions with the current
set X, then return to the master algorithm to add another vector to X.

We'll stop when x is “close enough” to being a restricted equilibrium
(based on ~s).

Deciding when to stop the subproblem is a bit of an art. Often it doesn't
pay to solve the subproblem to a high level of accuracy when X is still small
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Master algorithm:

@ Initialize the set X' < )

@ Find shortest paths for all OD pairs.

© Form the all-or-nothing assignment x* based on shortest paths.

Q If x* is already in X, stop.

© Add x* to X.

O Subproblem: Find a restricted equilibrium x using only the matrices
in X.

@ Find the improvement direction Ax
® Update x + x + pAx, with p sufficiently small (to reduce vs).
© Return to step 1 of subproblem unless 75 is small enough.

@ Return to step 2.
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Example

10x 34 +5X24

50+X24+O.5X34

Demand is 6.
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