Larger worked-out example of Frank-Wolfe for elastic demand

Stephen D. Boyles

October 15, 2018

Section 9.1.6 of the text contained a worked-out example of Frank-Wolfe for elastic demand, using a network with two links. This document is a second worked-out example of the same algorithm, on a slightly larger network. (Figure 1). The figure shows the link performance functions; the only OD pair is from node 1 to node 4 , and the demand function is

$$
D^{14}\left(\kappa^{14}\right)=15-\kappa^{14} / 10
$$

The corresponding inverse demand function is

$$
D_{14}^{-1}\left(d^{14}\right)=10\left(15-d^{14}\right) .
$$

The details of the computations can be seen in the accompanying Excel spreadsheet. In this document, I list the steps sequentially, intentionally not giving numbers to each step - I do this to emphasize the overall flow of the algorithm, and to not become overly attached to a specific numbering of the steps (since there are equivalent ways to implement the same algorithm). The Excel spreadsheet does assign iteration numbers to these steps.

- Initialize with the solution $d^{14}=10, x_{13}=x_{34}=10$ and all other link flows zero.
- Recalculating the travel times with these flows, the shortest path is $[1,2,4]$, with a cost $\kappa=60$. So $T S T T=\mathbf{x} \cdot \mathbf{t}=10 \times 60+10 \times 100=1600$, while $S P T T=\mathbf{d} \cdot \boldsymbol{\kappa}=10 \times 60=600$. Thus $A E C=(1600-600) / 10=100$. The current value of the demand function is $D^{14}(60)=9$, so the total misplaced flow is 1 .
- The new target demand is $d_{14}^{*}=D^{14}(60)=9$, and the new target link flows are $x_{12}^{*}=x_{24}^{*}=9$ and zero elsewhere.

Figure 1: Network for worked-out example

- We choose λ to solve

$$
\begin{align*}
& t_{12}\left(\lambda x_{12}^{*}+(1-\lambda) x_{12}\right)\left(x_{12}^{*}-x_{12}\right)+\cdots+ \\
& \quad t_{34}\left(\lambda x_{34}^{*}+(1-\lambda) x_{34}\right)\left(x_{34}^{*}-x_{34}\right)+D_{14}^{-1}\left(\lambda d_{14}^{*}+(1-\lambda) d_{14}\right)\left(d_{14}^{*}-d_{14}\right)=0 \tag{1}
\end{align*}
$$

namely, $\lambda=0.420$.

- Taking a step of size λ gives a new demand of $d^{14}=9.58$, and link flows $x_{12}=x_{24}=3.78, x_{13}=x_{34}=$ 5.80 , and $x_{23}=0$.
- Recalculating the travel times with these flows, the shortest path is $[1,3,4]$, with a cost $\kappa=114$. So the new values of $T S T T$ and SPTT (calculated with the latest flows) are 1115 and 1090, respectively. Thus $A E C=2.61$. The current value of the demand function is $D^{14}(114)=3.62$, so the total misplaced flow is 5.96.
- The new target demand is $d_{14}^{*}=D^{14}(114)=3.62$, and the new target link flows are $x_{13}^{*}=x_{34}^{*}=3.62$ and zero elsewhere.
- Solving equation (1) with the new $\mathbf{x}, \mathbf{d}, \mathbf{x}^{*}$, and \mathbf{d}^{*} values gives $\lambda=0.598$.
- Taking a step of size λ gives a new demand of $d^{14}=6.01$, and link flows $x_{12}=x_{24}=1.52, x_{13}=x_{34}=$ 4.50 , and $x_{23}=0$.
- Recalculating the travel times with these flows, the shortest path is $[1,2,3,4]$, with a cost $\kappa=77.7$. So the new values of $T S T T$ and $S P T T$ (calculated with the latest flows) are 575 and 468 , respectively. Thus $A E C=17.9$. The current value of the demand function is $D^{14}(77.7)=7.23$, so the total misplaced flow is 1.21 .
- The new target demand is $d_{14}^{*}=D^{14}(114)=3.62$, and the new target link flows are $x_{12}^{*}=x_{23}^{*}=x_{34}^{*}=$ 3.62 and zero elsewhere.
- Solving equation (1) with the new $\mathbf{x}, \mathbf{d}, \mathbf{x}^{*}$, and \mathbf{d}^{*} values gives $\lambda=0.187$.
- Taking a step of size λ gives a new demand of $d^{14}=6.24$, and link flows $\left[x_{12}, x_{13}, x_{23}, x_{24}, x_{34}\right]=$ [2.59, 3.65, 1.35, 1.23, 5.01].
- Recalculating the travel times with these flows, the shortest path is $[1,2,4]$, with a cost $\kappa=100.1$. So the new values of $T S T T$ and $S P T T$ (calculated with the latest flows) are 638 and 625 , respectively. Thus $A E C=2.19$. The current value of the demand function is $D^{14}(77.7)=4.99$, so the total misplaced flow is 1.25 .
- ...

Continuing ad libitum, both the average excess cost and total misplaced flow will converge to zero (although, as seen in these steps so far, not necessarily monotonically).

