
Solving for dynamic user equilibrium

CE 392D

DUE algorithms

Overall DTA problem

1. Calculate route
travel times 2. Find shortest paths

3. Adjust route choices
toward equilibrium

We can envision each of these steps as a “black box.” Chapters 10 and 11
covered boxes 1 and 2, what do we need to do to close the loop?

DUE algorithms

This course will go over three methods for switching drivers between
routes:

Convex combinations

Simplicial decomposition

Gradient projection

In contrast to static assignment, all of these are heuristics. They function
well enough for practice, but convergence guarantees are few and far
between and involve severe restrictions on the network loading or network
structure.

DUE algorithms

Recall the principle of dynamic user equilibrium:

All routes used by travelers leaving the same origin at the same time for
the same destination have equal and minimal travel time.

If we have departure time choice, then all travelers leaving the same origin
for the same destination have equal and minimal generalized cost,
regardless of their departure time and path.

DUE algorithms

CONVEX COMBINATIONS

Let H be a matrix of time-dependent path flows

3

2

1

Cell data: 1 2 3
Capacity 20 5 5
Max. vehs. 30 10 10
w/v 1 1 1

Inflow to cell 1: pi1 pi2
Interval 0 10 0
Interval 1 5 5
Interval 2 0 10

H =

 10 0
5 5
0 10


DUE algorithms Convex combinations

One approach

Start with path flows H0

Use a flow model (PQ, CTM, LTM) to simulate traffic flow

Calculate travel time matrix T (showing travel time on each path and
departure time)

Get target path flow matrix H∗ placing everybody on the shortest
path available at their departure time

Get updated path flow matrix by taking a weighted average of H0 and
H∗

Repeat flow model, etc.

DUE algorithms Convex combinations

For instance, after simulating path flows H =

 10 0
5 5
0 10

, let’s say we

get travel times T =

 14 13
17 18
22 24


Then H∗ =

 0 10
10 0
10 0


We now update the path flow matrix H ← λH∗ + (1− λ)H where
λ ∈ [0, 1] is the weight or “step size”

If λ = 1/2 then H =

 5 5
7.5 2.5
5 5


If λ = 1/5 then H =

 8 2
6 4
2 8


DUE algorithms Convex combinations

How do we choose λ?

There are two ways to go wrong. If λ is “too big”, then we are
overcorrecting.

If λ is “too small”, then it will take a very long time to finish (if at all).

DUE algorithms Convex combinations

The method of successive averages tries to prevent both problems by
starting with large λ values and moving to smaller ones.

If λi is the step size for the i-th iteration, {λi} = {1/2, 1/3, 1/4, 1/5, . . .}.

We can choose other patterns for the step sizes, but will require∑
λi =∞ and

∑
λ2
i <∞. (Why?)

DUE algorithms Convex combinations

We can also try to choose λ more intelligently: what value of λ brings us
closest to equilibrium (lowest AEC)?

Unfortunately, there is no easy way to find this λ value. (This is different
than in static assignment.)

A line search is usually the only option (trial and error on λ).

DUE algorithms Convex combinations

It is also possible to use different λ for different OD pairs and different
times:

1 Use higher λ for earlier departure times than later.

2 Use higher λ values when travel times differ more.

3 etc.

Sometimes these help, sometimes they don’t. Welcome to the world of
dynamic traffic assignment.

DUE algorithms Convex combinations

SIMPLICIAL
DECOMPOSITION

Simplicial decomposition is more sophisticated than convex combination
algorithms: rather than “forgetting” the H∗ matrices from previous
iterations, we will save them

The set H = {H∗1 ,H∗2 ,H∗k} stores the H∗ matrices from each iteration
(ignoring duplicates).

DUE algorithms Simplicial Decomposition

Why the name simplicial decomposition?

The key step in the algorithm is finding a “restricted equilibrium” only
using the set H (rather than the set of all possible H matrices)

We say a matrix H is feasible if its entries are all nonnegative, and the sum
of each row is the total demand leaving at each time interval.

If H1,H2, . . . ,Hk are feasible, then the convex combination
λ1H1 + λ2H2 + . . .+ λkHk is feasible if

∑k
i=1 λi = 1 and λi > 0.

We can frame the problem this way: Find λ1 . . . λk such that
∑k

i=1 λi = 1,
λi > 0, and λ1H

∗
1 + λ2H

∗
2 + . . .+ λkH

∗
k is a restricted equilibrium..

DUE algorithms Simplicial Decomposition

The set of λi satisfying the conditions
∑k

i=1 λi = 1 and λi > 0 is a
(k − 1)-dimensional simplex.

A simplex extends the concept of a triangle to higher dimensions.

DUE algorithms Simplicial Decomposition

Simplicial Decomposition Algorithm

This algorithm has two components: the master algorithm and a
subproblem

Master algorithm:

1 Initialize the set H ← ∅
2 Find shortest paths at all departure times

3 Form the all-or-nothing assignment H∗ based on shortest paths

4 If H∗ is already in H, stop.

5 Add H∗ to H.

6 Subproblem: Find a restricted equilibrium H using only the matrices
in H.

7 Return to step 2.

DUE algorithms Simplicial Decomposition

Assuming we can solve the subproblem, this algorithm is guaranteed to
converge. Why?

There are only finitely many all-or-nothing assignments.

After each iteration, we add another matrix to H.

Eventually, we’ll have them all and the algorithm will terminate.

DUE algorithms Simplicial Decomposition

Furthermore, when the algorithm terminates, we have found the
equilibrium. Why?

If the shortest paths with respect to H are already in H, then the
restricted equilibrium is also an unrestricted equilibrium.

DUE algorithms Simplicial Decomposition

So, everything hinges on the subproblem: Find λ1 . . . λk such that∑k
i=1 λi = 1, λi > 0, and λ1H

∗
1 + λ2H

∗
2 + . . .+ λkH

∗
k is a restricted

equilibrium.

We can use Smith’s algorithm to solve the subproblem.

Note: Smith’s algorithm assumes that T (H) is continuously differentiable
and monotone. In general, DTA models do not satisfy these properties, so
Smith’s algorithm is not guaranteed to find a restricted equilibrium. How-
ever, it usually works well in practice.

DUE algorithms Simplicial Decomposition

Smith’s algorithm

Given a solution H, improve it in the following manner:

1 Find an improvement direction ∆H

2 Update H ← H + µ∆H, where µ is chosen such that AEC is smaller
after the update.

If µ is small enough, the new H will be feasible and AEC will be lower.
Often we test different values of µ until we find a “successful” one, e.g., 1,
1/2, 1/4, etc.

DUE algorithms Simplicial Decomposition

How do we find the improvement direction?

Define the matrix dot product in the same way as the vector dot product,
that is, H · T =

∑
π

∑
τ h

π
τ t
π
τ .

Let [·]+ = max{·, 0} be the “positive” operator.

Then

∆H =

∑
H∗

i ∈H
[T (H) · (H − H∗i)]+ (H∗i − H)∑

H∗
i ∈H

[
T (H) · (H − H∗i)

]+
is an improvement direction.

Proof: Smith, 1983.

DUE algorithms Simplicial Decomposition

How many improvement directions do we take?

At some point, we stop finding improvement directions with the current
set H, then return to the master algorithm to add another vector to H.

We’ll stop when H is “close enough” to being a restricted equilibrium
(based on a restricted AEC, defined next).

Deciding when to stop the subproblem is a bit of an art. Often it doesn’t
pay to solve the subproblem to a high level of accuracy when H is still small

DUE algorithms Simplicial Decomposition

The restricted AEC is defined relative to H.

AEC ′ =
H · T (H)−minH∗

i ∈H{H
∗
i · T (H)}

||H||

where ||H|| is the total demand (sum of all the elements in H)

Why is this similar to the regular definition of AEC?

DUE algorithms Simplicial Decomposition

Master algorithm:

1 Initialize the set H ← ∅
2 Find shortest paths at all departure times

3 Form the all-or-nothing assignment H∗ based on shortest paths

4 If H∗ is already in H (or AEC small enough), stop.

5 Add H∗ to H.
6 Subproblem: Find a restricted equilibrium H using only the matrices

in H.
1 Find the improvement direction ∆H
2 Update H ← H + µ∆H, with µ sufficiently small (to reduce AEC ′).
3 Return to step 1 of subproblem unless AEC ′ is small enough.

7 Return to step 2.

Review: does this algorithm always terminate? with the correct answer?

DUE algorithms Simplicial Decomposition

Example

DUE algorithms Simplicial Decomposition

Comparing simplicial decomposition and convex
combinations

H1*

H2*

H3*

H4*

H5*

H6*
H7*

H

By combining multiple directions, simplicial decomposition can reach
equilibrium faster.

DUE algorithms Simplicial Decomposition

GRADIENT PROJECTION

This method is based directly on the equilibrium principle

We want to choose H such that all of the used paths have equal and
minimal costs.

Let’s deal with a simpler case first: there are only two paths, the paths
don’t overlap, and there is just one departure time.

Then T1 is a function of H1 alone, and T2 is a function of H2 alone.

We want to choose H1 and H2 such that T1(H1) = T2(H2), and
H1 + H2 = D where D is the travel demand.

Eliminating H2, we need to solve

T1(H1) = T2(D − H1)

DUE algorithms Gradient Projection

We use Newton’s method to solve this equation
numerically.

Newton’s method finds the zero of a function f iteratively, with x ← x −
f (x)/f ′(x)

What are f and f ′ for our case?

We have f (H1) = T1(H1)− T2(D − H1) , so
f ′(H1) = dT1/dH1 + dT2/dH2 (why?)

DUE algorithms Gradient Projection

Intuitively: when we shift a unit of flow from H1 to H2, T1 decreases by
dT1/dH1, and T2 increases by dT2/dH2.

Therefore, the difference in travel times changes by dT1/dH1 + dT2/dH2.
This is the gradient part.

DUE algorithms Gradient Projection

We also need to make sure that H1 and H2 are nonnegative.

If H1 or H2 is negative after a Newton shift, set its flow equal to zero, and
assign all demand to the other. This is the projection part.

DUE algorithms Gradient Projection

You should be asking the following questions:

What if there are more than two paths?

What if there is more than one departure time?

How can we calculate derivatives in DTA?

What if the paths overlap?

DUE algorithms Gradient Projection

MULTIPLE PATHS

Assume there are k non-overlapping paths, with travel time functions
Ti (Hi).

Then we can eliminate one path flow variable using the constraint∑
i Hi = D, as before. WLOG assume that path k is the shortest path; we

choose this path to eliminate.

The system of equations is then

T1(H1) = Tk(D − H1 − · · · − Hk−1) (1)

...
... (2)

Tk−1(Hk−1) = Tk(D − H1 − · · · − Hk−1) (3)

DUE algorithms Multiple Paths

Newton’s method can be applied to multidimensional functions.

We want to find a zero of f : Rn → Rn. Let x ∈ Rn be an n-dimensional
vector.

The Newton iteration is now

x ← x − (Jf (x))−1f (x)

where Jf (x) is the Jacobian of f evaluated at x

Calculating the inverse Jacobian is computationally expensive. In
multidimensional cases, we often use a quasi-Newton method based on an
approximation to Jf or its inverse.

DUE algorithms Multiple Paths

In our case, f (H) =


T1 − Tk

T2 − Tk
...

Tk−1 − Tk

.

Jf =


dT1
dH1

+ dTk
dHk

dTk
dHk

· · · dTk
dHk

dTk
dHk

dT2
dH2

+ dTk
dHk

· · · dTk
dHk

...
...

. . .
...

dTk
dHk

dTk
dHk

· · · dTk−1

dHk−1
+ dTk

dHk


.

DUE algorithms Multiple Paths

We take the approximation

Jf =


dT1
dH1

+ dTk
dHk

0 · · · 0

0 dT2
dH2

+ dTk
dHk

· · · 0
...

...
. . .

...

0 0 · · · dTk−1

dHk−1
+ dTk

dHk


This matrix is easy to invert, so

(Jf)−1 ≈



(
dT1
dH1

+ dTk
dHk

)−1
0 · · · 0

0
(
dT1
dH1

+ dTk
dHk

)−1
· · · 0

...
...

. . .
...

0 0 · · ·
(
dTk−1

dHk−1
+ dTk

dHk

)−1


.

DUE algorithms Multiple Paths

Then the Newton update x ← x − (Jf (x))−1f (x) is simply the following:

Hi ←
[
Hi −

Ti − Tk

dTi/dHi + dTk/dHk

]+

∀i 6= k

Hk ← D − H1 − · · · − Hk−1

(Essentially, perform the two-path Newton update between each path and
the shortest path without updating the travel times in between.)

DUE algorithms Multiple Paths

WHAT ABOUT DIFFERENT
DEPARTURE TIMES?

The major complication with different departure times is the same as with
overlapping paths: Tk is not just a function of Hk alone, but also depends
on other entries in the path flow matrix.

Simple solution: Pretend like this problem doesn’t exist, and apply the
multi-path quasi-Newton method for each departure time.

Slightly more complex solution: Introduce a step size µ and update as
follows:

Hi ←
[
Hi − µ

Ti − Tk

dTi/dHi + dTk/dHk

]+

∀i 6= k

Hk ← D − H1 − · · · − Hk−1

with 0 < µ <= 1. Typically start with µ = 1 and reduce it if AEC gets
stuck at a positive value.

DUE algorithms What about different departure times?

HOW DO WE CALCULATE
DERIVATIVES IN DTA?

How to calculate dTi/dHi depends on the traffic flow model.

Consider a path π and departure time τ , and track the flow when it
reaches the downstream end of the link.

If there is no queue when the path trajectory reaches the downstream end
of a link, we can add additional vehicles without causing one... the
derivative of the travel time on that link is zero.

If there is a queue, adding an extra vehicle to the link will increase the
travel time by 1/q↓, where q↓ is the link outflow rate.

Therefore, with the PQ model, dTτ,π/dHτ,π =
∑

1/q↓a , where the sum is
over all links a on π which have a queue when a vehicle departing at time
τ reaches the downstream end of a.

DUE algorithms How do we calculate derivatives in DTA?

WHAT ABOUT
OVERLAPPING PATHS?

One special case of overlapping paths is easier to treat. If π1 and π2 start
with the same set of links before diverging, we know that switching flow
between these paths will not affect travel times upstream of the diverge,
so we only need to calculate derivatives after π1 and π2 diverge.

DUE algorithms What about overlapping paths?

	Convex combinations
	Simplicial Decomposition
	Gradient Projection
	Multiple Paths
	What about different departure times?
	How do we calculate derivatives in DTA?
	What about overlapping paths?

