Practical issues with DTA
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DTA in practice



PREPARING INPUT DATA



What do you need to run the basic traffic assignment model?

@ The network itself
o Parameters for link models (capacities, free-flow speeds, etc.)
e OD matrix

The extensions of TAP require additional information, such as demand func-
tions, destination attractiveness, logit parameters, value of time, etc.
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Deciding which streets to include in the network is a balance of accuracy
and computation time/data collection requirements.

In practice, regional models typically include minor arterials and larger
roads; neighborhood streets are typically abstracted into centroid
connectors:

Neighborhood streets are typically uncongested, so there isn't a need to
model them in great detail. (Or is there?)
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Ideally, fundamental diagrams are obtained through regression of field
data. What are the complications?
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(Aside: recent research is looking at changes-of-variables which produce a
better fit to data.
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These use Lagrangian coordinates (n, t) or (n, x), instead of Eulerian
coordinates (t, x).
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The OD matrix is often the most challenging input data to calibrate, for
several reasons:

@ There are many more OD matrix entries than links.

@ The OD matrix can't be observed directly (unlike link speeds and
flows).

Can we use direct observations (say, link flows) to try to estimate the OD
matrix?
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This is surprisingly difficult!

Because there are more OD matrix entries than links, the problem is highly

underdetermined; the problem is not finding an OD matrix that matches
the
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One trivial solution is for all trips to go from one node to a neighboring
node.
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(As an aside, the distinction between a good regression fit and a good
model is absolutely critical here.)
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We often have an OD matrix available from other parts of the planning
process, say, a gravity model. Can we use this “target” OD matrix as a
starting point which can be adjusted to conform to link flows?
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We can try a least-squares approach where we try to match both the
target OD matrix and the link flows:
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where A reflects the importance put on matching the OD matrix relative
to the link flows; the proper balance is a matter of judgment and depends
on the level of trust in the accuracy of d and X.

We have two constraints: nonnegativity of OD matrix entries d” > 0, and
that the link flows x must be a user equilibrium solution given the OD
matrix d.
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Because field data contains some noise and error, however, all solutions
which satisfy link flows exactly may have short trips:
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A quasi-dynamic approach can help match the number of decision
variables and observations.

Divide the analysis period into “sub-periods”; assume that within each
sub-period, the distribution of trips between origins and destinations is
fixed.

DTA in practice Preparing Input Data



If we have counts available on nj. links, and there are ng time steps in the
analysis period, then we have n;.ng observations we can use.

If there are ny,g OD pairs, then there are n,yng entries in the dynamic OD
matrices; generally nog > nj, so we have many more unknowns than
equations.

With the approach of Cascetta et al., let n, be the number of origins, and
n; the number of “sub-periods” of the analysis peirod. Then the number
of unkowns is:
@ nyn, values, giving total departures from each origin at each time
step.
@ n:(nog — no) values, giving the proportion of the demand from each
origin to each destination during time period 7.
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By adjusting the length of the “sub-periods” and timestep, we can bring
balance to the number of unknowns and equations.

The ratio is approximately 1 if nj = n, + Z—;("od — No)
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The mod, parameters are key: they reflect the fraction of flow that
departred OD pair od at time ' which is on link / at time 6. This can be
obtained from network loading; but if the OD matrix changes
substantially from the seed, we need to do another loading.
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An alternative formulation: use departure time choice to automatically
“profile” the demand.

Advantage: Departure time profiles are endogenous; determined
behaviorally rather than statistically

Disadvantage: Parameters in schedule delay equations may vary over
the population and with time.

For more details, see:

Levin, M. W., S. D. Boyles, and J. Duthie. (2016) Demand profiling for
dynamic traffic assignment by integrating departure time choice and trip
distribution. Computer-Aided Civil and Infrastructure Engineering 31, 86—
99
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Uniform preferred arrival time
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Avg. departure time
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Normally distributed preferred arrival time
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MULTISCALE MODELING



Multiscale modeling aims to get the “best of both world,” so to speak.

A microsimulator provides detailed results on a small area; a regional model
gives more aggregate results on a larger area.
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But how do two models communicate with each other?
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In principle, information can flow from either model to the other.

Regional DTA Model

Path flows and dem Subarea travel times

Microsimulation

A consistent solution to both models respects both directions.
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The main focus is usually on the boundary conditions, translating one
models outputs to anothers inputs.

Regional DTA Model

Path flows and dem

Microsimulation

Solve for equilibrium on the regional model; see which vehicles enter the
subarea, and use those as the path flows for microsimulation.
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In practice, this usually involves an ad hoc fitting-together and sequential
solution.

\ Regional DTA Model \

_ Microsimulation |

\Regional DTA Model |

Can we do better?
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How large should the subarea be?
This question was studied for two “nested” DTA models in the Austin area.
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(Bringardner, Gemar, Machemehl, Boyles, 2014-15)
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These analyses gave recommendations about the subarea “radius” in terms
of the number of affected links, and the severity of the capacity reduction.

Capacity Reduction
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2 Links -

Number of Links Modified
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Or is the "how large” question a red herring?

Downtown subnetwork

The real question is where the interactions lie, and how large they are. J
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An emerging alternative is the use of “soft” boundaries, which blur the
distinction between the models.

The subarea model retains a simplified version of the regional network,
rather than eliminating it entirely. Route choice and diversion can be mod-
eled naturally.
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ACCURACY AND
STABILITY



Multiscale models highlight the question of model stability: how do model
outputs change with inputs. ldeally, a model is not overly sensitive to
having exactly the right input parameters.

In reality, this has been relevant all along!
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I'm starting with a simpler setting, with two equally-tractable network
loading models. The objective is to predict the steady-state flow rates on
links in one of two ways:

Spillback: If a link’s outflow is restricted, its steady-state inflow will be
similarly restricted.

No spillback: Restrictions to a link's outflow are not transmitted to its
inflow.

Clearly, the spillback model is more realistic, and will be treated as
“ground truth.” However, spillback can introduce discontinuities into flow
models, so small input errors can potentially propagate into much larger
output errors.
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p and @, are model parameters, the objective is to estimate the flow Q;.
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Standard merge and diverge equations apply

At the merge, in highly congested conditions flow is allocated
proportionate to capacity, if the sending flow from an approach is less than
this the other approach can increase its flow.

The diverge respects the first-in, first-out principle, flows waiting to exit
the freweay will obstruct thru traffic.

In a spillback model, the steady-state inflow rate to the onramp cannot
exceeds its outflow rate.
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This example is small enough that it can be solved exactly.

Q,  No spillback Q,  Spillback
A 1/3 1
1
(1-p)/3p (%)
2/3
1-p)(1-Q,)/p (*
1-p
(1-p)/(2p)
> >
0 1/2 1 0 1/2 1

If we don't know p and @» exactly, which model gives better results?
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For a given “true” value of of p and @, perform the following:

@ Generate n sampled values of @ and p, using independent normal
distributions, with means p and (5, and given standard deviation.

@ For each sample, eNS and €° are the absolute errors of the
no-spillback and spillback models.

o Calculate the additional expected error in the no-spillback model:
§ = E[¢M> — €°], and its standard deviation s.

e Calculate the t score: t = 46/(s/+\/n)
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If t is greater than a positive critical value, we can conclude the
no-spillback model has higher error.

If tis less than a negative critical value, the spillback model has higher
error.

Otherwise that there is no significant difference between the models in
terms of error.
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400 true values were chosen, uniformly distributed in [0, 1]2.

2500 samples were run for each case.
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