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NETWORK LOADING
PROBLEM



Network loading

In the network loading problem, we are given the paths and departure
times of each vehicle, and must find the travel times along all paths for all
possible departure times.

For dynamic traffic assignment, this essentially means tracking the
trajectories of vehicles as they travel through the network.
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This complex problem involves both link models and node models.

A link model focuses on what happens within a single roadway
segment.

A node model focuses at what happens at junctions, where links
conicide.

By combining these together, we can solve large networks in a “modular”
way (which is amenable to parallel computing).

We first study simple link models, then move to node models.
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In this course, we will treat network loading in discrete time, where the
timestep is ∆t, and the time points are {0, 1, 2, . . . , T̄}.
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Variables which occur at a point in time t are assumed to happen exactly
at time t. Variables which occur over a period of time t happen between t
and t + 1.
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Network loading happens sequentially, in increasing order of time. We
assume network conditions are empty at t = 0; then we calculate the state
of the network at t = 1, t = 2, and so forth.

Essentially, we need to know how to compute the state of the network at
t + 1, given its state at times 0, 1, . . . , t.
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For each link, we can define the sending flow and receiving flow.

The sending flow S(t) is the flow which would leave the link during the
t-th interval if it were connected to a sink of infinite capacity.

The receiving flow R(t) is the flow which would enter the link if it were
connected to a source of infinite capacity.

The purpose of sending and receiving flow is to see what can happen on a
link independently of any other link. Node models will be used to see how
many vehicles actually enter and exit a link based off of the interactions
between different links’ sending and receiving flows.
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POINT QUEUE
MOTIVATION



Divide a link into two sections:

1 An uncongestible physical section representing the time required to
travel on the link with no congestion.

2 A point queue at the downstream end of the link, occupying no
physical space but representing delay due to congestion.

Physical section

Point queue
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Vehicles always cross the physical section in the same
length of time.

Physical section

Point queue

Further, when we study the queue, we don’t have to worry about where
vehicles are: they’re all in the same physical location.
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Both the physical section and point queue can be
described by one parameter.

1 The relevant parameter for the physical section is the free-flow time
tf . (If we know the link length L and free-flow speed uf , this is just
L/uf )

2 The relevant parameter for the point queue is the capacity q↓max , the
maximum rate at which vehicles can leave the link.
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CUMULATIVE CURVES



Let N(t) denote the total number of vehicles which have passed some
point at time t.

Time t

Number of vehicles  N
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In particular, let...

N↑(t) be the cumulative count at the upstream end of a link

NPQ(t) be the cumulative count at the entrance to the point queue

N↓(t) be the cumulative count at the downstream end of the link
(exit of the point queue).
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How are N↑(t) and NPQ(t) related?

Time t

Number of vehicles  N

Upstream link end

PQ entrance

Free flow time

NPQ(t) = N↑(t − tf ) because there is never any congestion delay on the
physical section.
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What about NPQ(t) and N↓(t)?

Time t

Number of vehicles  N

Upstream link end

PQ entrance

Free flow time

Downstream link end

Capacity

N↓(t) takes the highest possible value given (1) N↓(t) ≤ NPQ(t); (2)

N↓(t)− N↓(t −∆t) ≤ q↓max∆t; and (3) any obstruction from
downstream. For the purpose of sending flow we can ignore (3).
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Since NPQ is just N↑ shifted to the right, we can rewrite the formula solely
in terms of N↑:

S(t) = min{N↑(t + ∆t − L/uf )− N↓(t), q↓max∆t}
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One way to interpret how flow leaves the PQ

(in a discrete-ish setting)

1 We want to move as many vehicles as possible out of the PQ (no
“holding back” flow that could move), however...

2 We can’t have a negative number of vehicles in the PQ; and

3 We can’t move more vehicles than the capacity of the link
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The formula for receiving flow is simple, because the physical section is
only constrained by the upstream capacity:

R(t) = q↑max∆t
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Example
Assume that a link has L/uf = 3∆t, q↑max = 10∆t, and q↓max = 5∆t, and
that the N↑(t) is given as a boundary condition.

t N↑ N↓ R S

0 0 0 10 0
1 1 0 10 0
2 5 0 10 0
3 10 0 10 1
4 17 1 10 4
5 27 5 10 5
6 30 10 10 5
7 30 15 10 5
8 30 20 10 5
9 30 25 10 5

10 30 30 10 0

When are there vehicles waiting in queue?

Introduction to DTA Cumulative Curves



SPATIAL QUEUES



The major assumption of the point queue model was that the queue
occupies no physical space.

(Li, 2011)

In reality, queues that fill an entire link will block entry into the link and
“spill back.”
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In the spatial queue model, we assume a jam density kj , so that the
maximum number of vehicles that can be on the link at any point in time
is kjL.

The sending flow formula is the same (nothing is different about how the
queue discharges):

S(t) = min{N↑(t + ∆t − L/uf )− N↓(t), q↓max∆t}

The receiving flow is modified so that the number of entering vehicles
cannot exceed the physical space on the link:

R(t) = min{kjL− (N↑(t)− N↓(t)), q↑max∆t}
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Repeating the same example with kjL = 20 gives the following table:

t N↑ N↓ R S

0 0 0 10 0
1 1 0 10 0
2 5 0 10 0
3 10 0 10 1
4 17 1 4 4
5 21 5 4 5
6 25 10 5 5
7 30 15 5 5
8 30 20 10 5
9 30 25 10 5

10 30 30 10 0

It takes longer for all 30 vehicles to enter the link, because R drops as the
link fills up. The other vehicles are “held back”
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The spatial queue model has its limitations, too: it assumes that all
vehicles move forward simultaneously on a link.

Introduction to DTA Spatial queues


	Network Loading Problem
	Point queue motivation
	Cumulative Curves
	Spatial queues

