
Time-dependent shortest paths

CE 392D

TDSP



TDSP CONCEPTS



In a network, we have a traveler leaving an origin node r at time t0,
heading for destination node s. What is the fastest route there, taking into
account the changes in link travel times during the trip?

r

s

This is called the time-dependent shortest path (TDSP) problem. It is the
converse to network loading.

TDSP TDSP Concepts



One odd twist of shortest path problems: it’s not much harder to find the
shortest path from r to s than to find many shortest paths at the same
time. Two broad approaches:

One-to-all: Find the shortest paths from node r to all destination nodes,
leaving at time t0.

All-to-one: Find the shortest paths from all origin nodes to node s,
arriving at time ta.

Which one is more appropriate? When would we have known departure
times, and when would we have known arrival times?

TDSP TDSP Concepts



Today, we’ll focus on the one-to-all problem. The all-to-one problem can
be solved in a symmetric way, just starting at a destination and working
backwards (rather than starting at the origin and working forwards).

We add a few additional assumptions to start:

Travelers choose routes to minimize travel time.

Travel times on all links obey the first-in, first-out (FIFO) property:
t < t ′ ⇒ t + τij(t) < t ′ + τij(t

′)

Waiting is not allowed at nodes. (Not necessary in FIFO networks,
but we’ll come back to this later.)

The network is strongly connected: for any departure time, there is at
least one path from every origin to every destination.

When might these assumptions be violated? Is there an easy way to check
the FIFO property?

TDSP TDSP Concepts



One-to-all TDSP relies on Bellman’s Principle, which lets us re-use
information between different origins and destinations:

If π∗ = [r , i1, i2, . . . , in, s] is a shortest path from r to s at time t0, then the
subpath [r , i1, . . . , ik ] is a shortest path from r to ik , also leaving at time
t0.

The upshot: we don’t have to consider the entire route from r to d at
once. Instead, we can break it up into smaller, easier problems.

TDSP TDSP Concepts



Why does Bellman’s principle hold?

r

i1

i2

s

Under the FIFO assumption, if there is a shorter path from r to ik , I could
“splice” that into π∗ and obtain a shorter path from r to s.

TDSP TDSP Concepts



ONE-TO-ALL TDSP
ALGORITHM IN FIFO

NETWORKS



This is Section 11.2.1 in the book, and is based on a modified version of
Dijkstra’s algorithm.

TDSP One-to-all TDSP Algorithm in FIFO networks



We associate two pieces of information with each node i :

A label Li storing the travel time on the shortest known path from r
to i (∞ if we don’t know any yet)

A predecessor qi storing the second-to-last node on the shortest
known path from r to i . (−1 if we don’t know any yet.)

We also maintain a list of finalized nodes F , to which we are sure we have
found the shortest path.

Why are the predecessors enough to tell us the entire shortest path?

TDSP One-to-all TDSP Algorithm in FIFO networks



This algorithm has two phases: an initialization and an iteration.

Given: Origin node r , departure time t0
Find: Shortest paths to all nodes i 6= r

Initialization:
Set Lr = t0 and Li =∞ for all i 6= r .
Set qi = −1 for all i .
Set F = ∅.

Iteration:
Repeat the following steps until F contains all nodes:

Let i be the unfinalized node with the least Li label.
Finalize i by adding it to F .
For each link (i , j) leaving node i , do the following:

If Li + τij(Li ) < Lj then set Lj = Li + τij(Li ) and qj = i .

TDSP One-to-all TDSP Algorithm in FIFO networks



EXAMPLE



After initialization

1

2

3

4max{8 – t/2, 1}

Node 1 2 3 4

L 4 ∞ ∞ ∞

q -1 -1 -1 -1

10 5

2 + t 2 + t

TDSP Example



After iteration 1

1

2

3

4max{8 – t/2, 1}

Node 1 2 3 4

L 4 10 14 ∞

q -1 1 1 -1

10 5

2 + t 2 + t

TDSP Example



After iteration 2

1

2

3

4max{8 – t/2, 1}

Node 1 2 3 4

L 4 10 13 22

q -1 1 2 2

10 5

2 + t 2 + t

TDSP Example



After iteration 3

1

2

3

4max{8 – t/2, 1}

Node 1 2 3 4

L 4 10 13 18

q -1 1 2 3

10 5

2 + t 2 + t

TDSP Example



After iteration 4

1

2

3

4max{8 – t/2, 1}

Node 1 2 3 4

L 4 10 13 18

q -1 1 2 3

10 5

2 + t 2 + t

TDSP Example



What would be the instantaneous shortest path?

1

2

3

4max{8 – t/2, 1}

Node 1 2 3 4

L 4 ∞ ∞ ∞

q -1 -1 -1 -1

10 5

2 + t 2 + t

TDSP Example



MORE GENERAL TDSP



More general versions of the time-dependent shortest path problem:

Non-FIFO links

Link cost is different from link travel time

Bellman’s principle can fail in these cases unless we are more careful.

TDSP More general TDSP



1 2

34

Scenario 1

Costs and times are constant when no time index is given.

t=1

t=1
t=3

t(2)=3
t(3)=1

TDSP More general TDSP



1 2

34

Costs and times are constant when no time index is given.

t=3

t=1

t=1

t=1

c=1

c=1
c=1

c(2)=5
c(3)=10

TDSP More general TDSP



A time-expanded network contains a copy of each node, for each (discrete)
time step.

Each “node” in the time-expanded network represents a physical node at a
specific instant in time. We use the notation i : t for this.

Each link in the time-expanded network represents leaving a physical node
at a certain point in time, and arriving at another physical node at another
point in time.

TDSP More general TDSP



i:0 j:0 k:0 l:0 m:0

i:1 j:1 k:1 l:1 m:1

i:2 j:2 k:2 l:2 m:2

i:3 j:3 k:3 l:3 m:3

i:4 j:4 k:4 l:4 m:4

Physical node

Time 4

Time 3

Time 4

Time 2

Time 1

Time 0

i j k l m

In a FIFO network, links between the same physical node will never cross.

TDSP More general TDSP



Bellman’s principle holds in the time-expanded network.

Furthermore, the time-expanded network is acyclic, so we can find shortest
paths more efficiently than before by moving through the network in
increasing order of time.

In this algorithm, we use cij(t) to refer to the cost of link (i , j); it need not
be the same as the travel time.

We use q̄ as the “backnode” (which now includes the time for leaving the
previous node, since it refers to a time-expanded node.)

TDSP More general TDSP



Initialization:
Set Lt0r = 0 and Lti =∞ for all i 6= r .
Set q̄ti = −1 for all i , t.
Set t to the departure time t0.

Iteration:
Repeat the following steps until t is the last time interval:

For each time-expanded link (i : t, j : t ′), perform the following steps:

Set Lt
′
j = min

{
Lt

′
j , L

t
i + cij(t)

}
.

If Lt
′
j changed in the previous step, update q̄t

′
j ← i : t.

Increase t by 1.

TDSP More general TDSP



Example

1 2

34

Costs and times are constant when no time index is given.

t=3

t=1

t=1

t=1

c=1

c=1
c=1

c(2)=5
c(3)=10

TDSP More general TDSP



ALL DEPARTURE TIMES



We will need to find shortest paths for each origin, destination, and
departure time.

The algorithms thus far picked one origin r and departure time t0, and
found shortest paths to all destinations s.

Another alternative is to pick one origin r and destination s, and find
shortest paths for all departure times t.

This approach will naturally lend itself to a departure time choice model.

TDSP All departure times



Key differences

Lti now is the cost of the best-known path from i to the destination s,
starting at time t.

q̄ti now is a forwardnode, showing the next node in this best-known path.

Backnodes no longer work, because multiple departure times could end up
arriving at the same node simultaneously.

TDSP All departure times



Initialization:
Set Lts = 0 for all t and Lti =∞ for all i 6= s and all t.
Set q̄ti = −1 for all i , t.
Set t to the time horizon T .

Iteration:
Repeat the following steps until t = 0:

For each time-expanded node (i : t) and link (h : t ′, i : t), perform the
following steps:

Set Lt
′
h = min

{
Lt

′
h , L

t
i + chi (t

′)
}

.

If Lt
′
h changed in the previous step, update q̄t

′
h ← i : t.

Decrease t by 1.

TDSP All departure times



1

2

3

4

1 + 2t

5

max {10− t, 0}

1 + t

5

TDSP All departure times



t Lt
1 Lt

2 Lt
3 Lt

4 q̄t
1 q̄t

2 q̄t
3 q̄t

4

20 ∞ ∞ ∞ 0 −1 −1 −1 −1
19 ∞ ∞ ∞ 0 −1 −1 −1 −1
18 ∞ ∞ ∞ 0 −1 −1 −1 −1
17 ∞ ∞ ∞ 0 −1 −1 −1 −1
16 ∞ ∞ ∞ 0 −1 −1 −1 −1
15 ∞ 5 5 0 −1 3 4 −1
14 ∞ 5 5 0 −1 3 4 −1
13 ∞ 5 5 0 −1 3 4 −1
12 ∞ 5 5 0 −1 3 4 −1
11 ∞ 5 5 0 −1 3 4 −1
10 10 5 5 0 2 3 4 −1
9 10 6 5 0 2 3 4 −1
8 10 7 5 0 2 3 4 −1
7 10 8 5 0 2 3 4 −1
6 10 7 5 0 2 4 4 −1
5 10 6 5 0 2 4 4 −1
4 11 5 5 0 2 4 4 −1
3 12 4 5 0 2 4 4 −1
2 10 3 5 0 3 4 4 −1
1 8 2 5 0 3 4 4 −1
0 6 1 5 0 3 4 4 −1

TDSP All departure times



In many cases, drivers can choose their departure times, not just their
routes.

Define a function f (t) giving the “cost” of arriving at the destination at
time t; drivers wish to minimize the sum of path cost and f (t).

One example: if t∗ is the preferred arrival time, then

f (t) = α[t∗ − t]+ + β[t − t∗]+

The only change needed to the previous algorithm is to initialize Lts to f (t)
instead of 0!

TDSP All departure times



1

2

3

4

1 + 2t

5

max {10− t, 0}

1 + t

5

Assume that the arrival time cost is

f (t) = 2[t − 10]+ + [10− t]+

TDSP All departure times



t Lt
1 Lt

2 Lt
3 Lt

4 q̄t
1 q̄t

2 q̄t
3 q̄t

4

20 ∞ ∞ ∞ 20 −1 −1 −1 −1
19 ∞ ∞ ∞ 18 −1 −1 −1 −1
18 ∞ ∞ ∞ 16 −1 −1 −1 −1
17 ∞ ∞ ∞ 14 −1 −1 −1 −1
16 ∞ ∞ ∞ 12 −1 −1 −1 −1
15 ∞ 25 25 10 −1 3 4 −1
14 ∞ 23 23 8 −1 3 4 −1
13 ∞ 21 21 6 −1 3 4 −1
12 ∞ 19 19 4 −1 3 4 −1
11 ∞ 17 17 2 −1 3 4 −1
10 30 15 15 0 2 3 4 −1
9 28 16 13 1 2 3 4 −1
8 26 17 11 2 2 3 4 −1
7 24 18 9 3 2 3 4 −1
6 22 13 7 4 2 4 4 −1
5 20 8 5 5 2 4 4 −1
4 21 6 6 6 2 4 4 −1
3 22 7 7 7 2 4 4 −1
2 14 8 8 8 3 4 4 −1
1 9 9 9 9 3 4 4 −1
0 10 10 10 10 3 4 4 −1

TDSP All departure times


	TDSP Concepts
	One-to-all TDSP Algorithm in FIFO networks
	Example
	More general TDSP
	All departure times

