
Towards equilibrium: combining network loading and
behavior

CE 392D

Connecting DNL and TDSP



Recall that the dynamic traffic assignment problem combines a model for
traffic flow and congestion with a model for user behavior.

Route Travel Times Route Choices

Thus far in the course we have treated each box separately. How do we
reconcile them?

Connecting DNL and TDSP



We need to do the following things:

1 Represent path choices and departure time choices

2 Calculate travel times from the results of dynamic network loading

3 Calculate turning fractions p from path choices.

Connecting DNL and TDSP



REPRESENTING PATH
CHOICES



How do we represent the path and departure time choices of individual
travelers?

Route Travel Times Route Choices

Connecting DNL and TDSP Representing path choices



A few possibilities in current use

Discrete vehicles: Each vehicle is an “agent” assigned a departure time
and path

Continuous path flows: Let hπt be the number of vehicles departing on
path π during time interval t

Node turning fractions: Let αt
hij ,s be the fraction of vehicles leaving link

(h, i) and heading to s that turn onto (i , j) during interval t

Each possibility has pros and cons, depending on the network loading proce-
dure. Furthermore these can all be applied with either discrete or continuous
time.

Connecting DNL and TDSP Representing path choices



Given how we’ve introduced dynamic network loading and time-dependent
shortest paths, “continuous path flows” are easiest to explain.

The entries hπt can be placed into a matrix H where the rows and columns
index the paths in the network, and the possible departure times.

A matrix H is feasible if it satisfies these conditions:

1 hπt >= 0 for all π and t (non-negativity)

2
∑

π∈Πrs
hπt = d rs

t for all r , s, and t (no vehicle left behind)

Denote the set of all feasible path flow matrices as H̄.

Connecting DNL and TDSP Representing path choices



Alternatively, when there is departure time choice, the set of all feasible
path flow matrices can be written as Ĥ:

1 hπt >= 0 for all π and t (non-negativity)

2
∑

π∈Πrs
hπt = d rs for all r , s (no vehicle left behind)

Connecting DNL and TDSP Representing path choices



Advantages:

Using continuous variables fits with fluid-based dynamic network
loading (LWR) model

It is possible to identify which vehicles are on which links at what
times (select link analysis)

Time-dependent shortest path algorithms give a best path π which
can be directly identified with a specific row in the H matrix.

Disadvantages:

The number of paths can grow exponentially in the size of the
network. (Solution: generate rows of H only when needed)

Some extra work is needed to compute p values for dynamic network
loading. (Solution: see later slides)

Connecting DNL and TDSP Representing path choices



Alternative: discrete vehicles

Advantages:

Behavior is easy to identify: each vehicle is assigned

Amenable to agent-based simulations with more complex behavior
rules.

Disadvantages:

Equilibrium can be harder to find (there may be no “pure-strategy”
equilibrium, think matching pennies)

Be careful with rounding, especially with small time steps.

Also, memory requirements now scale with the number of vehicles, rather
than network size. This can be either an advantage or disadvantage.

Connecting DNL and TDSP Representing path choices



Alternative: turning proportions

Advantages:

Number of variables scales linearly with network size, rather than
exponentially.

p values are trivially calculated.

Disadvantages:

Harder to identify the paths that specific vehicles take.

Harder to connect with time-dependent shortest paths.

Connecting DNL and TDSP Representing path choices



CALCULATING TRAVEL
TIMES



How do we get link/path travel times for time-dependent shortest path?

Route Travel Times Route Choices

Connecting DNL and TDSP Calculating travel times



After completing network loading, we need to find each link’s travel time
at each time interval: τij(t)

t

N
Upstream

Downstream

t

(t)

Network loading provides us with cumulative entries and exits to each link
N↑ij (t) and N↓ij (t), we can use these to find travel times.

Connecting DNL and TDSP Calculating travel times



The main idea: invert the cumulative counts to obtain the entry and exit
times for a particular vehicle: convert N↑(t) and N↓(t) to T ↑(n) and
T ↓(n).

Then for a particular vehicle n, its travel time is T ↓(n)− T ↑(n)

So τij(t) = T ↓ij (N
↑
ij (t))− T ↑ij (N

↑
ij (t)) = T ↓ij (N

↑
ij (t))− t

Connecting DNL and TDSP Calculating travel times



A few difficulties:

If we are discretizing time, the values of N↑(t) and N↓(t ′) may not
align. (Solution: interpolate)

If vehicles are not entering a link at a particular time, N↑(t) is
constant and the inverse function is not well-defined. (Same with
exiting vehicles.)

Introduce the tie-breaking rule T ↑(n) = arg mint

{
t : N↓ij (t) = n

}
and the

same for T ↓. Then ensure τij is at least equal to free-flow time:

τij(t) = max
{
T ↓ij (N

↑
ij (t))− t, uf L

}

Connecting DNL and TDSP Calculating travel times



The travel time along a path can be calculated by “stitching together”
travel times on links.

N

t
t

τ1(t)

N

t
t + τ1(τ)

N

t

τ2(t + τ1(τ)) τ3(t + τ1(τ) + τ2(t + τ1(τ)))

t + τ1(τ) + τ2(t + τ1(τ))

i j k l

t + τ1(τ) t + τ1(τ) + τ2(t + τ1(τ))

The formula is messier than the idea, just keep this figure in mind.

Connecting DNL and TDSP Calculating travel times



CALCULATING TURNING
PROPORTIONS



Route choice in networks takes place at diverges and general intersections

i

h j

Shi Rij

kRik

Thus far, we have used pij values to describe this behavior.

Connecting DNL and TDSP Calculating turning proportions



However, we need something more sophisicated to tie this to route choice.
Drivers are leaving from different origins, and destinations, and it is very
difficult to pre-specify pij values from the actual route choices.

Let Πrs be the set of paths connecting origin r to destination s

We can define cumulative counts for paths, too. Let Nπ(x , t) be the
number of vehicles on path π who have passed location x by time t

Then, N(x , t) =
∑

r ,s

∑
π∈Πrs

Nπ(x , t).

Connecting DNL and TDSP Calculating turning proportions



Route choice can be completely specified by Nπ(0, t), where x = 0 refers
to the origin node in the path. Why?

If the rate of demand leaving r for destination s at time t is drs(t), then
we need

∑
π∈Πrs

Nπ(0, t) =
∫ t

0 drs(t ′) dt ′ for all t.

(Sums instead of integrals in a discrete flow model.)

Connecting DNL and TDSP Calculating turning proportions



We want to do two things with these Nπ values:

1 Track the flow of vehicles on each path over time

2 Determine the pij values “on the fly” based on the route choices
Nπ(0, t)

Furthermore, all of this must be done in the context of one of the flow
models we’ve developed previously.

Connecting DNL and TDSP Calculating turning proportions



For a discrete model, S(t) is the sending flow during time interval t. We
want to know how much each path contributes to this sending flow: Sπ(t).

Let t1 and t2 to be the times at which the first and last vehicles in this
sending flow entered the link.

That is, N↑(t1) = N↓(t) and N↑(t2) = N↓(t + S(t)).

Interpolation is often necessary.

We now calculate Sπ(t) = N↑π(t2)− N↑π(t1).

Connecting DNL and TDSP Calculating turning proportions



t

N
Upstream
(total)

Downstream
(total)

t1

Path 2

Path 1 t2 t

S(t)

Path 1 sending flow

Path 2 sending flow

Connecting DNL and TDSP Calculating turning proportions



The p values are now calculated based on Sπ(t): we can see what
proportion of the vehicles in the sending flow want to move in each
direction.

Once we calculate the transition flows yij(t), there are two approaches to

updating N↑π and N↓π:

Method I: Recalculate t1 and t2 values based on the actual moving flow,
not sending flow; N↓π(t + 1) = N↓π(t) + yπij (t) for upstream link,

N↑π(t + 1) = N↑p i(t) for downstream link.

Method II: Assume that the flows from each path are evenly distributed
within the sending flow, N↓π(t + 1) = N↓π(t) + (yij(t)/pijSij(t))Sπij (t).

Method II is common in practice; if the time step is small the error intro-
duced by this assumption is manageable.

Connecting DNL and TDSP Calculating turning proportions



DYNAMIC USER
EQUILIBRIUM



Route Travel Times Route Choices

We seek a dynamic user equilibrium solution which is mutually consistent:
drivers choose paths and departure times such that they have no desire to
change after those choices are realized.

Connecting DNL and TDSP Dynamic user equilibrium



This connects with the game theory introduced at the start of the
semester.

Connecting DNL and TDSP Dynamic user equilibrium



Mathematically, we can model this as a fixed point problem or as a
variational inequality.

We can write the matrix of travel times T as

T = N (H)

where N represents the dynamic network loading of the path flow matrix
H.

Given travel times T , we can express the allowable path flows as the set
B(T ).

(Examples: B places travelers only on paths with minimum travel time; on
paths and departure times minimizing generalized cost; on paths within ε
of the minimum travel tiem)

Then, the path flow matrix H solves the dynamic traffic assignment problem
if

H ∈ B(N (H))

Connecting DNL and TDSP Dynamic user equilibrium



The most common behavior rule is that departure times are fixed, but
travelers choose routes to minimize travel time (“dynamic user
equilibrium”). Then we can express a solution to the dynamic traffic
assignment problem as a matrix H∗ ∈ H̄ satisfying the variational
inequality

N (H∗) · (H∗ − H) ≤ 0

for all other matrices H ∈ H̄

We can do something similar with departure time choice as well.

Connecting DNL and TDSP Dynamic user equilibrium



In static assignment, we can use the fixed point and variational inequality
formulations to prove existence of solutions, uniqueness, etc.

However, these results relied on continuity arguments that do not always
hold in dynamic traffic assignment. Later in this course we will see some
strange behavior that can occur as a result.

Connecting DNL and TDSP Dynamic user equilibrium


	Representing path choices
	Calculating travel times
	Calculating turning proportions
	Dynamic user equilibrium

