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Abstract

In most dynamic network loading models, oversaturation at a diverge node results in a
queue forming on the upstream link, restricting flow to all downstream approaches. When
combined with simplified flow models where travel speed is constant for all densities below
the critical density, the resulting dynamic equilibrium problem may have infinitely many user
equilibrium solutions, despite a unique system optimum solution. We demonstrate this with
a simple diverge-merge network, which we also use to show that the price of anarchy in such
systems may be unbounded. We feel that this issue is an artifact of modeling assumptions,
rather than a description of a phenomenon in the field, and discuss piecewise-linear fundamental
diagrams as one possible resolution.
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1 Introduction

This paper discusses the implications of two common assumptions in dynamic network loading
models: (1) queues at diverge nodes obstruct traffic to all downstream links; and (2) vehicles travel
at free-flow speed whenever vehicle density is subcritical. These assumptions underlie many of the
large-scale dynamic traffic assignment (DTA) models used in practice today, greatly simplifying the
calculations involved. However, we present a small example in which, under these two assumptions,
literally every feasible route assignment is a user equilibrium, although these solutions correspond
to vastly different flow conditions and the system optimum solution is unique. In passing, we show
that the price of anarchy in such systems can be arbitrarily high.

The setting for our examples is a basic diverge-merge network (Figure 1), similar to the ones used by
Daganzo (1998) and Nie (2010) to discuss other complications in dynamic network loading. Daganzo
uses this network to show that these models can exhibit chaotic behavior due to queue spillback, and
in particular that increasing the capacity on a “bottleneck” link may worsen conditions due to self-
optimizing drivers choosing shortest routes. Nie demonstrates that the user equilibrium solutions
in such a network are not unique, and proposes stability and efficiency criteria for distinguishing
among these equilibria. In fact, the equilibria we study in this paper were briefly noted by (Nie,
2010, Equilibria IV in Section 3), but the focus of his paper was on the other, “efficient” equilibria.
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Figure 1: Network studied in this paper, with link capacities shown.

In this paper, we perform a deeper analysis of the “inefficient” equilibria. In contrast to both
Daganzo (1998) and Nie (2010), which focused on the effects of congestion arising at a merge node,
we consider congestion arising at the diverge node: in our examples, the only network congestion
will occur upstream of the diverge node.

As discussed in more detail below, our concern is not that this phenomenon occurs in practice, but
that it may occur during solution of DTA models, giving the illusion of much greater congestion
than would exist in reality. Furthermore, this phenomenon may be difficult to detect in large
networks. Modifying the fundamental diagram to include more than one linear piece for subcritical
densities can reduce the impact of this phenomenon without significantly complicating the network
loading. Our intent in this paper is primarily to call attention to this possibility, and to spur further
research into its prevalence and potential resolutions.

The remainder of the paper is organized as follows: Section 2 describes the network loading model
and assignment logic, presents the basic example, and remarks on the price of anarchy. Section 3
discusses the practical implications of our example, and how it may manifest in larger networks.
Piecewise-linear fundamental diagrams are discussed in Section 4, and Section 5 briefly concludes
and points to future research.

2 Primary Results

2.1 Network model

The phenomenon raised in this paper arises under rather general assumptions, to be discussed in
more detail in Section 3. However, for concreteness, we describe our example based on the LWR
hydrodynamic theory (Lighthill and Whitham, 1955; Richards, 1956), which postulates (1) that the
rate of flow q at any point and time is a function of density k alone — that is, q(x, t) = Qx,t(k(x, t))
at any location x and time t; (2) that the conservation law ∂q/∂x + ∂k/∂t = 0 holds everywhere
these derivatives exist; and (3) that the space-mean speed u is related to q and k by the fundamental
equation q = uk. The function Qx,t is often called the fundamental diagram. Given appropriate
boundary conditions, this network loading model can be formulated as the solution to a hyperbolic
partial differential equation. The solution of this model is greatly simplified by assuming a piecewise-
linear fundamental diagram; under this assumption, the solution is readily obtained by the method
of characteristics (Newell, 1993a,b,c), a finite difference scheme (Daganzo, 1994, 1995), or through
the solution of a shortest-path problem (Daganzo, 2005a,b).
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Figure 2: Triangular fundamental diagram specified by any three of the four parameters shown.

Omitting the location and time indices for brevity, the fundamental diagram Q(k) is continuous,
concave, and has two zeros: one at k = 0 and the other at the jam density k = kj . We define
the capacity q = maxkQ(k), and the critical density kc = min{k : Q(k) = q}. A density value
k is subcritical if k < kc. In the case of a triangular fundamental diagram (Figure 2), Q(k)
can be completely specified by any three of the following four parameters: the free-flow speed
v, the backward wave speed −w, the capacity q, and the jam density kj . It is convenient to
write Q(k) = min{S(k), R(k)} in terms of the sending flow S(k) = min{kv, q} and receiving flow
R(k) = min{w(kj − k), q} in this case.1 Other piecewise linear fundamental diagrams have been
proposed in the literature; for instance, the trapezoidal diagram in Daganzo (1994) is commonly
used, with a horizontal piece corresponding to the capacity q. For brevity we initially assume
a triangular fundamental diagram of two pieces; however, in all examples in this paper density
remains subcritical, so need only concern ourselves with the increasing portion of the fundamental
diagram, and the remarks in this paper would apply equally to trapezoidal fundamental diagrams
or any other with a single increasing linear piece.

In the network in Figure 1 there are four links with unit length; relative to each link, x = 0 denotes
the upstream end and x = 1 the downstream end. We assume that the fundamental diagram
is homogeneous on each link and constant with time, using qi to refer to the capacity at each
point on link i, kij the jam density on link i, and so forth. At the diverge, we are interested in
the inflow rates r2 and r3 from the downstream end of link 1 to the upstream ends of links 2
and 3, respectively. Defining the sending and receiving flows at location x on link i at time t as
Si(x, t) and Ri(x, t), r2 and r3 depend on S1(1, t), R2(0, t), and R3(0, t). Using p1i(t) to denote the
fraction of the sending flow wishing to travel to link i (i ∈ {2, 3}), we have ri(t) = φ(t)p1i(t)S1(1, t)
where φ(t) = mini∈{2,3}{1, Ri(0, t)/[p1i(t)S1(1, t)]}. Notice that if one of the downstream links i′ is

1We describe the problem in continuous time; discrete equivalents of these formulas can be found in Daganzo
(1995), Yperman (2007), and Nie et al. (2008).
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oversaturated — that is, if Ri′(0, t) < p1i′(t)S1(1, t) — the flow to both links 2 and 3 is restricted.

A variety of merge models exist (Daganzo, 1995; Lebacque, 1996; Jin and Zhang, 2003; Ukkusuri
et al., 2012). However, in all of the examples in this paper, we assume q4 ≥ q2 + q3, so there is no
congestion at the merge node and we only need to specify the trivial case of no merge congestion:
qi4(t) = Si(1, t) for all t and i ∈ {2, 3}.

We assume a total of D vehicles enter the upstream end of link 1 at a uniform rate W . (That is,
the inflow rate is W for t ∈ [0, D/W ] and zero afterward.) Route choice is often expressed in terms
of the rate at which vehicles depart on each path in the network. However, in our network, it is
simpler to express route choice solely through the splitting proportions at the diverge. Since p12(t)
and p13(t) are nonnegative and sum to one, we can use the single parameter p(t) ∈ [0, 1] to describe
route choice at each point in time, with p12(t) = p(t) and p13(t) = 1−p(t). Expressing route choice
in this way simplifies the calculations and is equivalent to specifying path departure rates under
mild regularity assumptions; for instance, it is sufficient to assume path departure rates and p(t)
are continuous almost everywhere, an assumption we adopt. We are interested in the functions p(t)
which create dynamic user equilibria according to Wardrop ’s principle (1952): that no traveler
may reduce his or her travel time by unilaterally switching routes. In a continuous-flow setting,
this implies that for any departure time, the travel times on all used paths are equal and minimal.

In our example, we let q2 = q3 = W/2, q1 = q4 = W , vi = 3 on all links (so the free-flow time
through the network is 1), and kij = D on all links (so there will be no queue spillback). With this
selection of parameters, the only place congestion could possibly occur is upstream of the diverge
node. Since the route choice p12(t) is only made at the diverge node itself (the downstream end of
any queue on link 1), it should be clear that any possible function p(t) results in a user equilibrium,
because all links downstream of the diverge node will be at free-flow. Different p(t) functions will
create different amounts of delay upstream of the queue, but this delay never affects the vehicle
at the front of the queue, which is the only place where route choice can be exercised. Since the
user equilibrium assumption is only concerned with a driver’s own delay, and never that of other
drivers in the system, it follows that any choice of p(t) satisfies the user equilibrium condition.
The following subsections explore this issue quantitatively, respectively deriving the same result
by direct calculation of delays, modifying the network to illustrate an unbounded price of anarchy,
and conducting a broader sensitivity analysis with less contrived parameters.

2.2 Delay calculations

The previous subsection argued that any choice of p(t) produces a user equilibrium solution, due
to the selfish nature of equilibrium routing and the network structure. This subsection verifies this
logic by writing expressions for the travel time on each path given p(t), which will also serve as the
basis for additional analysis.

As stated above, the only possible congestion in the network occurs at the downstream end of link
1. The diverge model ensures that the inflow rates to links 2 and 3 never exceed their capacity,
and since the capacity of link 4 is the sum of the capacities of links 2 and 3, no congestion will
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occur at the merge. Until all D vehicles exit link 1, its outflow rate will be Wφ(t). Therefore, the
cumulative number of vehicles which have exited link 1 by time t is given by

N↓1 (t) =

∫ t

0
S1(t

′)φ(t′) dt′ (1)

while the cumulative number of vehicles that have entered link 1 by time t is N↑1 (t) = Wt. Let T

be the time at which the last vehicle exits link 1, that is, N↓1 (T ) = D. Substituting the parameters
of the network model into the diverge equation, we have

φ(t) = min{1/[2p(t)], 1/[2(1− p(t))]} (2)

for t ∈ (1/3, T ) since there is no spillback from links 2 and 3, implying R2(0, t) = R3(0, t) = W/2.

Furthermore, S1(t) > 0 and φ(t) > 0 for t ∈ (1/3, T ) imply that N↑1 (t) and N↓1 (t) are strictly

increasing and thus have well-defined inverse functions t↑1(n) and t↓1(n), respectively denoting the
time at which the n-th vehicle enters and exits link 1. Thus, for n ∈ (0, D), the travel time of the
n-th vehicle on link 1 is given by

τ1(n) = t↓1(n)− t↑1(n) (3)

Since both paths in the network consist of three links, two of which are never congested and have
free-flow time 1/3, the total travel time of the n-th vehicle is

τ(n) = t↓1(n)− t↑1(n) + 2/3 (4)

In particular, τ(n) does not depend on the path chosen — for all vehicles, the travel time is the same
on either path available to them, so all functions p(t) produce solutions satisfying the Wardrop user
equilibrium conditions. However, as seen in the next section, these equilibria are not equivalent in
terms of experienced travel time.

2.3 Price of anarchy

It is common to distinguish among multiple equilibria in terms of the total travel time of all vehicles
in the system; in particular, following Koutsoupias and Papadimitriou (1999), one can define the
“price of anarchy” ρ of a system to be the ratio between the worst user equilibrium (in terms of
total travel time) and the system-optimal solution which minimizes total travel time (which need
not be a user equilibrium). In this subsection, we show that by varying the parameters in our
example, the price of anarchy can be arbitrarily high. This is in contrast to many other network
equilibrium problems, in which the price of anarchy can be bounded under general assumptions:
Roughgarden (2002) shows that ρ ≤ 4/3 for a static equilibrium problem with affine cost functions,
and that ρ = Θ(p/ log p) for polynomial cost functions of degree p. Explicit bounds have been found
for other equilibrium variants, including static equilibrium with congestion pricing (Han and Yang,
2008), static stochastic user equilibrium with logit disturbance terms (Guo et al., 2010; Huang
et al., 2011), and dynamic single-bottleneck models (Doan and Ukkusuri, 2012). Anshelevich and
Ukkusuri (2009) showed that the price of anarchy can be arbitrarily large in dynamic networks;
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however, in their example, the price of anarchy only grew with the network size. Below, we show
that the price of anarchy can be made large even with a four-link network.

Define the total cost of travel to be

Σ =

∫ D

0
τ(n)dn (5)

Clearly τ(n) ≥ 1 for all n (since that is the free-flow travel time). This lower bound can in fact be

attained for all vehicles: t↑1(n) is simply n/W , and if p(t) = 1/2 for all t, φ(t) = 1, S1(t) = W for
t ∈ [1/3, T ], so

N↓1 (t) =

∫ t

0
S1(t

′)φ(t′) dt′ =


0 if t < 1/3

W (t− 1/3) if t ∈ [1/3, T ]

D if t > T

(6)

N↓1 (t) must be continuous, so we have T = 1/3 + D/W , and can calculate the inverse function

t↓1(n) = 1/3 + n/W for n ∈ (0, D); hence τ1(n) = (1/3 + n/W ) − n/W = 1/3 and τ(n) = 1, so
Σ = D in this system-optimal solution.

To find an upper bound on Σ, we need to choose p(t) to maximize τ↓1 (n) for all n. While in general
such a maximization problem would require techniques from the calculus of variations, this example
can be solved through a simpler argument: maximizing τ↓1 (n) is equivalent to maximizing t↓1(n) for

all n (since t↑1(n) is given), which is equivalent to minimizing N↓1 (t) for all t, which is equivalent to
minimizing φ(t) for all t, which occurs if p(t) = 1 or 0 for all t ∈ (0, T ). Performing the calculations
in this case, we have

T = 1/3 + 2D/W (7)

N↓1 (t) = W (t− 1/3)/2 for t ∈ [1/3, T ] (8)

t↓1(n) = 1/3 + 2n/W (9)

so finally
τ1(n) = 1/3 + n/W (10)

τ(n) = 1 + n/W (11)

and
Σ = D +D2/2W (12)

Since all solutions are user equilibria, we may define the price of anarchy ρ to be the ratio between
these upper and lower bounds on Σ found above:

ρ =
D +D2/2W

D
= 1 +

D

2W
(13)

which can clearly be made arbitrary large by increasing the ratio D/W .
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2.4 Sensitivity analysis

This section discusses how the above analysis would change under different choices of parameters.
The most important parameters in our example are q2, q3, and the inflow rate W to the network.
The choice of q4 and q1 are less significant as long as q4 ≥ q2+q3 and q1 ≥W , assumptions we retain
as essential features of our demonstration. In particular, we allow q2 6= q3, but enforce q2 ≤ q3 by
symmetry. Allowing W , q2, and q3 to take generic positive values within these assumptions, we
divide the analysis into three major cases:

Case I: W < q2. In this case, no congestion can arise at the diverge node, since φ(t) = 1 regardless
of p(t), and all solutions have Σ = D. Therefore all solutions are both user equilibria and
system optima, and ρ = 1.

Case II: W > q2 but W ≤ q2 + q3. In this case, it is possible to avoid congestion by suitably
dividing the outflow from link 1 between links 2 and 3, so in the system-optimum solution
all vehicles experience unit delay and Σ = D. However, congestion can be caused if p is too
large: if p(t) > q2/W , φ(t) < 1, but such solutions remain user equilibria because the only
source of delay is upstream of the diverge node. Repeating the analysis from the previous
subsection, we find that the worst-case delay is obtained with p(t) = 1 for all t, for which

Σ = D +
D2

2

(
1

q2
− 1

W

)
(14)

and

ρ = 1 +
D

2

(
1

q2
− 1

W

)
(15)

and again the price of anarchy can be made arbitrarily large by increasing D. (The previous
subsection’s analysis is a special case.)

Case III: W > q2 + q3. In this case, some congestion is inevitable, since links 2 and 3 do not
have enough capacity to handle the outflow from link 1. Delay is minimized by maximizing
φ(t), which occurs if q2/p(t) = q3/(1− p(t)) or p(t) = q2/(q2 + q3). In this case, the resulting
total delay is

Σ = D +
D2

2

(
1

q2 + q3
− 1

W

)
(16)

as the reader may verify. As with Case II, delay is maximized with p(t) = 1 for all t, resulting
in

Σ = D +
D2

2

(
1

q2
− 1

W

)
(17)

As before, all solutions are user equilibria, but the system optimum is unique (p(t) = q2/(q2+
q3)). Therefore, the price of anarchy is

ρ =
1 +D(1/q2 − 1/W )/2

1 +D(1/(q2 + q3)− 1/W )/2
(18)

which is bounded for any fixed values of q2 and q3 even as D → ∞, but which increases
without bound if q2 + q3 →W at the same time as D →∞, again yielding the results of the
previous subsection in the limit.
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To summarize, regardless of the capacity values chosen, all feasible solutions are user equilibria if
there is no downstream congestion at the merge; the implications in terms of the delay depend
on the relative values of the upstream link outflow rate and the downstream links’ capacities. If
the inflow rate is sufficiently small, no congestion will occur and all feasible solutions are system
optima; if the inflow rate is sufficiently large, a certain level of congestion is inevitable, but the
system optimal solution is unique and the price of anarchy is strictly greater than one. For inflow
rates between these extremes, some user equilibria produce congestion while others do not, and the
price of anarchy can thus be made arbitrarily high by manipulating the total demand.

3 Discussion

The previous section demonstrated that simple dynamic diverge-merge networks exist where every
feasible path assignment is a user equilibrium, despite major differences in total travel time as path
assignments vary. In this section, we discuss the implications of these findings, addressing three
questions in turn: whether this phenomenon is likely to exist in reality, or simply a modeling artifact;
the implications on DTA modeling and algorithm termination; and whether this phenomenon would
be localized, or if impacts could be felt throughout a larger network.

Regarding the first question, we believe this phenomenon is unlikely to occur in the field for several
reasons. First, from entropy considerations, if both paths have equal travel times, it is improbable
that all travelers would only select one path. Further, the previous results rely heavily on the
modeling assumption that travel times will continue to be equal on both paths despite unequal
usage, which follows from the assumption of the triangular fundamental diagram. In practice, due
to heterogeneity in driver behavior, average speed will drop even at lower densities if overtaking is
prohibited, and a travel time-minimizing driver would probably choose the link with lesser density
to maximize his or her probability of driving at the preferred speed. If this is the case, the unique
equilibrium occurs with p(t) = 1/2 for all t. In Section 4, we return to the fundamental diagram
as one possible resolution of the issue.

However, even if this phenomenon never occurs in the field, it poses great challenges from a model-
ing or algorithmic perspective. Given the example in the previous section, any DTA software using
a gap criterion to terminate will stop after the first iteration, since the user equilibrium principle is
satisfied exactly. If this first iteration is an all-or-nothing assignment, the reported level of conges-
tion will be the highest possible value, even though the more likely field conditions would be the
lowest possible value. Even continuing a DTA algorithm for another iteration after such “conver-
gence” is obtained may not detect the second, unused, path: if ties are broken deterministically in
the time-dependent shortest path computation, many simple path generation routines will return
the first path again since the travel times remain at free-flow on both downstream segments. While
it may be possible to check for the presence of this phenomenon in small networks, detecting this
phenomenon in larger networks can be more problematic. Furthermore, this issue is also not con-
fined to the LWR model and its variations; any flow model in which free-flow speeds are maintained
even as density rises is subject to the same analysis, such as point queue models.

Still worse, this phenomenon can propagate through larger networks. In the example above, link
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Figure 3: Grid networks have roughly similar topology to the diverge-merge network.

jam densities were chosen to avoid any spillback; however, if this phenomenon were to persist over
time, spillback on the upstream link would likely occur, reducing capacity on additional upstream
links. In a grid network (Figure 3), each block presents an alternative set of choices roughly
similar to a diverge and merge. While not directly identical, due to the presence of intermediate
nodes and the differences between diverge models and general intersections, congestion upstream
of intersections combined with free-flow conditions downstream will still produce the same result.
When modeling networks with high levels of congestion, even if this phenomenon occurs only at a
small handful of blocks in a central business district, the resulting spillback effects could result in
a huge increase in congestion.

One potential way to mitigate this modeling effect is to initially generate a working set of multiple
paths per origin-destination pair, perhaps using a K-shortest path algorithm. This approach is
often employed to avoid wasting early DTA iterations on highly congested solutions based on all-or-
nothing assignments, and one may hope that this strategy may also avoid the worst of the equilibria
discussed here. While studying this strategy is beyond the scope of this paper, we speculate that
its impact may be more limited than one would hope. In grid networks, the number of equal-length
paths between two points is quite large, and missing even one such path may trigger spillback and
obstruction of other links and origin-destination pairs.

The root causes of the phenomenon described in this paper are queuing located upstream of di-
verges, and free-flow conditions downstream (even with unequal link utilizations). This suggests
two approaches to resolving the issue and the difficulties it imposes on DTA models in determining
convergence. One alternative is to modify the diverge model, perhaps providing separate queues for
travelers heading for different links, as with independent turn lanes. However, this only pushes the
problem further upstream: it does not make sense for the capacity for each of these separate queues
to exceed the capacity for the downstream links, and effectively the diverge point has been moved
to the point at which the turn lanes split, rather than the point at which the links themselves split.

However, the second cause admits a more promising solution: adjusting the fundamental diagram so
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that speeds drop below free-flow even at subcritical densities. This technique is discussed in detail
in the next section, where we show that equilibria can be made unique (except for an arbitrarily
small interval of low demand) with an arbitrarily small perturbation of travel times. While the
Highway Capacity Manual (HCM) (Transportation Research Board, 2010, Exhibit 11-6) suggests
travel times begin to decrease when density exceeds 1000-2000 passenger cars per lane, we actually
propose introducing a perturbation at a much smaller density value. We believe this distinction
is acceptable for the following reason. The HCM and DTA serve different purposes — if average
speed is nearly constant with density over a particular range, for the purposes of operational
analysis there can be considerable advantage in approximating the speed as constant, simplifying
the model and avoiding the impression of false precision. However, as we have shown in this paper,
in DTA this assumption can produce an infinite number of equilibria and an unbounded price of
anarchy. Perturbing the fundamental diagram can address this issue while introducing a change in
travel times which can be made as small as desired, as we show in the next section. We feel the
benefits of reducing the size of the equilibrium set outweigh the minor loss in accuracy in travel
time calculation.

4 Piecewise-linear fundamental diagrams

In light of the computational advantages piecewise linear fundamental diagrams hold, we propose
introducing a second piece to the uncongested portion of the fundamental diagram, as in Figure 4.
Adding an additional piece to the fundamental diagram poses no major difficulties to the primary
solution methods for the LWR equations, merely adding one additional term to the minimization
in the sending flow equation in the cell-transmission or link-transmission models, or one additional
wave speed to check in Newell’s method or Daganzo’s variational method.

We demonstrate this by modifying the previous example in this way, beginning with an illustrative
example before addressing more fully the question of how the additional piece should be added.
Figure 4 shows a piecewise linear fundamental diagram for links 2 and 3, with an added line
segment in the uncongested region of slope 2, with the original triangular fundamental diagram
superimposed. Note that the critical density and backward wave speed have changed in order to
keep the capacity and jam density unchanged; specifically, the critical density increased from W/6
to W/5. For this diagram, link speeds are decreasing in k whenever k > W/10, with a unique
speed corresponding to each such density value. When the steady inflow rate to link i is ri with
this fundamental diagram, a routine application of Newell’s method yields the relation

N↓i (t) = min{rit− ri/2 +W/20, rit− ri/3} (19)

where i ∈ {2, 3} or

N↓i (t) =

{
rit− ri/2 +W/20 if ri ≥ 3W/10

rit− ri/3 if ri < 3W/10
(20)

while N↑i (t) = rit; thus if ri ≥ 3W/10 we calculate t↑i (n) = n/ri, t
↓
i (n) = n/ri + 1/2−W/20ri and

τi(n) = 1/2−W/20ri (21)
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Figure 4: Piecewise linear fundamental diagram for links 2 and 3; capacity and jam density un-
changed.

for all vehicles n since there is no bottleneck on the link; and if ri < 3W/10 we simply have
τi(n) = 1/3.

Assuming p constant, the inflow rates r2 and r3 to links 2 and 3 are related to the diverge by
r2 = min{pW,W/2} and r3 = min{(1 − p)W,W/2}. Taking p ∈ [1/2, 1] by symmetry, we have
r2 = W/2 and therefore τ2(n) = 2/5. Substituting the relation for r3 into (20) we have

τ3(n) =

{
1
2

(
1− 1

10(1−p)

)
if p ≤ 7/10

1/3 if 1/2 ≤ p < 7/10
(22)

Thus, the only equilibrium with constant splitting proportion occurs when p = 1/2 and τ2 = τ3 =
2/5.

While this example used a specific piecewise-linear fundamental diagram for concreteness, any such
diagram with more than one increasing piece and the same capacity would also produce a unique
equilibrium. The more general case is discussed next.

It is natural to ask how a piecewise-linear fundamental diagram should be chosen; one compelling
feature of the triangular diagram is its economy of parameters, being completely specified by free-
flow speed, capacity, and jam density. One approach is to calibrate directly to traffic observations,
but acquiring enough data to accurately calibrate these diagrams for each link in a large roadway
network may be prohibitive. Perhaps a simpler idea is to perturb the triangular diagram slightly,
so the piecewise-linear diagram retains its general character, but ensures unique speeds (even if
very close to free-flow) over a larger range of densities, as in Figure 5.
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Figure 5: Slightly perturbed fundamental diagram approximating triangular shape.

While several perturbation schemes can be imagined, it seems natural to require the capacity and
jam density to remain unchanged while allowing the critical density and backward wave speed to
adjust to fit the additional piece, since the former quantities are more often measured in the field
or calculated using procedures such as that in the HCM. Such a scheme can be implemented as
follows, using several small positive constants (denoted ε with appropriate subscripts):

1. For k ∈ [0, εk], q(k) = vk, that is, for a small initial portion the fundamental diagram is
unchanged.

2. For k ∈ [εk, kc + εc], q(k) = vεk + (v − εv)(k − εk) where εc is chosen so that q(kc + εc) = q,
that is, on the second piece the flow rises at rate slightly less than free-flow, and continues
until capacity is reached.

3. For k ∈ [kc + εc, kj ], q(k) = q(1− (kj − k)/(kj − kc − εc)), that is, on the final piece the flow
decreases linearly to zero.

Geometric calculations show that the new critical density kc+ εc is (q− εkεv)/(v− εv), as compared
to the triangular critical density kc = q/v, and that the new backward wave speed is q(v−εv)/(kjv−
q + εvkj + εkεv), as compared to the triangular backward wave speed qv/(kjv − q), and both of
these differences shrink to zero as εv and εk grow small.

With these fundamental diagrams, the range of demand values producing infinitely many equilibria
is greatly decreased. Solving the LWR model to obtain travel times as a function of link inflow
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rates yields

τ =

1/v ifr ≤ vεk
r − εkεv
r(v − εv)

otherwise
(23)

Assuming p ∈ (0, 1) (that is, both links 2 and 3 are used), then τ2 = τ3. If τ2 = τ3 = 1/v, then both
links are at free flow, and we must have pD = r2 ≤ vεk and (1 − p)D = r3 ≤ vεk. Equivalently,
we must have p ≤ vεk/D and p ≥ 1 − vεk/D, and any p satisfying both inequalities is a user
equilibrium. It is impossible to satisfy both inequalities unless vεk/D ≥ 1/2, or D ≤ 2vεk, so unless
the demand is quite small, this case will not apply.

If τ2 = τ3 > 1/v, then
r2 − εkεv
r2(v − εv)

=
r3 − εkεv
r3(v − εv)

(24)

or r2 = r3 since both the left-hand side and right-hand side are strictly decreasing in their argu-
ments. Therefore the unique equilibrium is p = 1/2.

Finally, the cases p = 0 and p = 1 can be discarded unless D ≤ vεk, in which case any solution is
a user equilibrium. Otherwise, p = 0 implies τ2 > τ3 = 1 and p = 1 implies 1/v = τ2 < τ3, neither
of which satisfies the Wardrop condition.

To summarize: if W ≤ vεk, all solutions are user equilibria; if vεk ≤ W ≤ 2vεk, any p ∈ [1 −
vεk/W, vεk/W ] is a user equilibrium; and if W ≥ 2vεk, the unique equilibrium is p = 1/2. (Figure 6)
Furthermore, the maximum possible difference in travel time between the triangular fundamental
diagram and perturbed fundamental diagram is

1

v
− q − εkεv
q(v − εk)

=
1

v
− 1

v

(
1− εkεv

q

)
1

1− εk/v
(25)

=
1

v
− 1

v

(
1− εkεv

q

)(
1 +

εk
v

+
ε2k
v2

+ · · ·
)

(26)

=
1

v
− 1

v

(
1 +

εk
v

+
ε2k
v2

+ · · ·
)

+
εkεv
qv

(
1 +

εk
v

+
ε2k
v2

+ · · ·
)

(27)

=

(
εkεv
qv
− εk
v2

)(
1 +

εk
v

+
ε2k
v2

+ · · ·
)

(28)

using the formula for the sum of a geometric series. As εk → 0, the terms εk
v ,

ε2k
v2
, . . . shrink to zero,

and the change in travel times is O(εkεv). Thus, the change in travel times and the range of inflow
rates W producing multiple equilibria can be made arbitrarily small by choosing small values of εk
and εv.

5 Conclusion

This paper discussed how diverge and traffic flow models can interact to produce counterintuitive
phenomena, as demonstrated by an example in which every feasible assignment is a user equilib-
rium even though the travel times vary widely, and in which the “price of anarchy” can be made
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Figure 6: Range of user equilibria as a function of inflow rate W .

arbitrarily high either by increasing the demand or decreasing the link capacities. Our opinion is
that this phenomenon is a modeling artifact, rather than something observable in the field. Nev-
ertheless, it poses serious challenges for dynamic traffic assignment algorithms in identifying the
“correct” equilibrium solution, and through spillback mechanisms, can propagate unrealistic con-
gestion throughout a network. Simple approaches (such as those based on generating an initial set
of paths) may fail to overcome this difficulty, particularly in grid networks.

However, modifying the fundamental diagram by including a second uncongested linear piece can
remedy or limit the effects of this phenomenon without compromising the efficiency of LWR solu-
tion methods, even when the resulting fundamental diagrams are only slightly perturbed from a
triangular one. Further research is needed to quantify the extent to which this phenomenon occurs
in larger networks, to investigate other means of resolving or mitigating this modeling issue, and
to more generally explore dynamic traffic assignment problems with multiple equilibria.
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