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Abstract One strategy for addressing uncertain roadway conditions and travel
times is to provide real-time travel information to drivers through variable
message signs, highway advisory radio, or other means. However, providing
such information is often costly, and decisions must be made about the most
useful places to inform drivers about local conditions. This paper addresses this
question, building on adaptive routing algorithms describing optimal traveler
behavior in stochastic networks with en route information. Three specific
problem contexts are formulated: routing of a single vehicle, assignment of
multiple vehicles in an uncongested network, and adaptive equilibrium with
congestion. A network contraction procedure is described which makes an
enumerative algorithm computationally feasible for small-to-medium sized
roadway networks, along with heuristics which can be applied for large-
scale networks. These algorithms are demonstrated on three networks of
varying size.

Keywords Intelligent transportation systems · Adaptive routing ·
Advanced traveler information systems · User equilibrium

1 Introduction

Transportation systems are inherently uncertain. Events such as incidents,
poor weather, variations in travel demand, and the chaotic nature of congested
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vehicle flow, make it impossible for drivers to predict the travel time on
any given route with certainty. A significant amount of travel delay, if not
the majority, can be attributed to nonrecurring causes (Lindley 1987), and
both researchers and practitioners have long recognized the importance that
this uncertainty plays in describing traveler behavior. One common strategy
for mitigating uncertainty is information provision through advanced traveler
information systems (ATIS), such as variable message signs (VMSs), highway
advisory radio (HAR), or many other technologies. These devices often pro-
vide information to drivers en route, so while drivers may anticipate receiving
information at certain locations, they cannot anticipate the specific message
they will receive. Thus, adaptive routing algorithms are needed to describe
how drivers respond to this type of information.

Within this context, public agencies must make decisions about where to
locate devices such as VMSs or HARs. Installing these devices is costly, and
a limited budget is available—for instance, an agency may only have sufficient
funds for placing three VMS signs in a certain city, and must decide how to
locate them to maximize the benefit to drivers.

Alternately, the information location problems can also be used to provide
adaptive driving directions for individuals. Many services are available which
provide a route connecting a given origin and a given destination; however,
in congested regions, the expected travel time can be reduced by providing
several alternatives which can be used depending on observed traffic condi-
tions. Current online shortest path algorithms can provide some insight on this
problem, but their practical application is limited to real-time devices (such
as in-vehicle navigation systems) because these typically assume a re-routing
decision can be made at every node, and there is no easy way to convey this
to drivers through printable directions or other format given a priori. On the
other hand, by restricting re-routing decisions to a small number of nodes,
one can simply report several complete paths to drivers, which is far more
easily understood—the problem becomes one of deciding where to allow this
re-routing, which is identical to the VMS location problem faced by a public
agency. In this case, it may not be necessary to assume an external information
provision device, but base online decisions on qualitative observations made
by the driver: “If the freeway is congested, exit onto this arterial.”

As mentioned above, considerable research has been performed on adap-
tive routing algorithms. Andreatta and Romeo (1988) considered a routing
problem where arcs may fail, in which case a traveler may need to follow
a predetermined “recourse path” to the destination. For acyclic networks,
Psaraftis and Tsitsiklis (1993) describe an algorithm which can determine
an optimal routing policy. When cycles are permitted, Miller-Hooks (2001)
presents a polynomial-time algorithm for independent arc costs, while Waller
and Ziliaskopoulos (2002) and Provan (2003) present pseudopolynomial algo-
rithms for several arc dependence scenarios. The case of general dependency is
more difficult, and is NP-complete, unless one takes the “reset assumption,” in
which arc costs can vary on successive visits; Polychronopoulos and Tsitsiklis
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(1996) and Provan (2003) develop algorithms for this case. Pretolani (2000)
and Miller-Hooks (2001) also address adaptive routing when costs are time-
dependent as well as stochastic. Gao (2005) presents an algorithm when arc
costs are time-dependent, stochastic, and have general dependency. These
algorithms typically assume users wish to minimize their expected travel time;
other behaviors have also been considered, such as minimizing schedule delay
(Gao and Chabini 2006) or maximizing the probability of on-time arrival (Nie
and Fan 2006). Any of these algorithms can be used to help determine the best
locations to provide information, depending on the assumptions one makes
about the underlying network.

Several researchers have also conducted studies regarding optimal locations
for providing information. Abbas and McCoy (1999) applied a genetic algo-
rithm to place VMSs at locations that maximize the number of vehicles which
observe these signs, but did not consider adaptive behavior in response to
this information. Chiu et al. (2001) and Chiu and Huynh (2007) combine a
mesoscopic dynamic traffic assignment simulation with a tabu search heuristic
to optimally locate VMSs. Incidents were randomly generated using a Monte
Carlo scheme, and some drivers would switch routes if their path encounters
an incident and a VMS sign; based on the resulting flow patterns, a set of VMS
locations was determined to optimize some measure of effectiveness. Huynh
et al. (2003) uses a similar analysis framework to find the optimal locations of
portable VMSs in a real-time framework, using the G-D heuristic. Although
the simulation approach allows a rich set of traffic and behavioral impacts to
be modeled, the computational burden associated with many simulation runs
on a large network can be troublesome.

This limitation was realized by Henderson (2004), who adopted a static
equilibrium framework for VMS location, together with a discrete choice
model to determine the proportion of drivers who switch routes in response
to learning of an incident. Several heuristic techniques are developed and
compared, including a genetic algorithm and a greedy approach based on
sequential location. While computationally faster, this approach implicitly
assumes that drivers do not anticipate receiving information; that is, their
initial route choice is not affected by the VMS locations, so links with a VMS
do not “attract” drivers who anticipate benefitting from that information, for
instance. Although this distinction may seem subtle, this anticipation effect
can lead to radically different route choices for rational drivers, even from the
origin (Boyles 2006).

The research presented here complements these works by providing analyt-
ical network algorithms for locating information, where users both anticipate
receiving information and adjust their routes adaptively. The remainder of this
paper is organized as follows. Section 2 describes the problem context for-
mally, along with rigorous definitions of three information location problems
addressed in the paper. Section 3 describes a network contraction procedure
which allows candidate solutions to be evaluated extremely rapidly. Section 4
describes exact algorithms and heuristics for solving these three problems,



S. D. Boyles, S. T. Waller

which are then demonstrated in Section 5. Finally, Section 6 concludes the
paper by summarizing the key contributions and pointing to future research
directions.

2 Problem definitions

Consider a directed graph G = (N, A, Z , D) where n = |N| and m = |A|
denote the number of nodes and arcs, respectively, Z ⊂ N represents the
zones where trips begin and end, and D ∈ R

|Z |×|Z |
+ is a matrix whose elements

duv represent travel demand between zones u and v. Let �(i) denote the set
of nodes adjacent to node i, and �−1(i) the set of nodes to which i is adjacent.
For each arc a ∈ A, let δ(a) represent its downstream node, that is, if a = (i, j),
then δ(a) = j. Each arc (i, j) can exist in one of a discrete set of states sij ∈ Sij

representing, for instance, normal operating conditions, a mild incident, and
a severe incident. Each state sij occurs with probability ps

ij, and is associated
with a cost function cs

ij(xs
ij) mapping the demand for travel xs

ij on this arc to the
corresponding cost.

The state of an arc is independently determined at each traversal (that is,
we take the “reset assumption”)—for example, if a driver’s route traverses the
same arc more than once, a different state may be experienced on both visits;
and different drivers traversing the same arc may each experience different
travel times. This assumption is motivated by the observation that the events
causing this uncertainty (such as incidents) typically do not last for the entire
study period. For instance, if an incident blocks a freeway lane for half an hour
out of a three-hour study period, only a sixth of drivers will see the incident,
assuming uniform arrivals.1 Thus, the probabilities ps

ij should be interpreted
as the chance that any given driver traveling on arc (i, j) sees state s, not the
probability that the arc is in state s for the entire study period.

Drivers receive travel information at a set of information nodes R ⊂ N by
learning the current states of the adjacent arcs. Note that information is only
given for adjacent arcs: we assume that either no information is provided
on more distant arcs (for instance, due to space limitations on a VMS), or
that any information is outdated by the time a driver would reach that arc.
Mathematically, a driver arriving at a node i ∈ R receives a message θ ∈ �i =
×(i, j)∈ASij; with the independence assumption, the probability of receiving
message θ is ρθ

i = ∏
(i, j)∈A ps(θ)

ij where s(θ) is the state conveyed by message
θ . At non-information nodes, drivers have no information; symbolically, we
write this as receiving a message θ = ∅ with probability 1.

For instance, consider the network shown in Fig. 1, where the arc labels
represent costs. Arcs (A, B), (C, E), and (D, E) have deterministic cost, while
the costs of (A, E), (B, C) and (B, D) take on one of two values with equal

1This assumption is also valid under Poisson arrivals, in terms of the expected number of drivers
seeing a given state.
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Fig. 1 Example network
to demonstrate notation
and concepts

probability. Assume that there is one traveler departing node A and destined
for node E, and that the costs are fixed and independent of this traveler’s
decision. If node A is an information node, the traveler learns the cost on
(A, E) and (A, B), so the potential messages are (7, 2) and (8, 2) and �A =
{(7, 2), (8, 2)}. On the other hand, if A was not an information node, �A = {∅},
and the driver must choose a path without knowing the exact costs on these
arcs. Likewise, if node B were an information node, the messages would
indicate the costs on (B, C) and (B, D), with �B = {(2, 2), (2, 6), (6, 2), (6, 6)}.

A flexible way of describing adaptive routing is to use routing policies.
A node-state is defined as a pair (i, θ) representing arrival at node i and
receiving message θ , with � = {(i, θ) : i ∈ N, θ ∈ �i} the set of all node-states.
A routing policy can be formally described as a function π : � → A indicating
the arc chosen by a driver arriving at node i and learning information θ , where
δ(π(i, θ)) ∈ �(i) for all (i, θ) ∈ �. With a slight abuse of notation, let E[π ] be
the expected cost experienced by a driver who follows policy π .

Note that policies only describe the next arc taken in the path; upon
arrival at the downstream end of that arc, the traveler will experience another
node state (possibly corresponding to no information ∅), choose the next arc
according to the policy, and so on. At first glance, this approach might appear
limited or myopic. In fact, the opposite is true, and a policy is a more general
way to specify user behavior than a path. If a policy prescribes the same choice
of outgoing arc regardless of the information received, the traveler will follow
a classical path, indicating that the set of paths is a subset of the set of policies.
Drivers are assumed to follow the routing policy that minimizes their expected
travel cost, a straightforward analogue of the assumption that drivers follow
shortest paths in deterministic networks. Least expected-cost policies can be
determined by applying the TD-OSP algorithm of Waller and Ziliaskopoulos
(2002) when the cost functions cij(·) are constant. When they are flow-
dependent, an optimal assignment of users to least expected-cost policies can
be accomplished using the UER2 algorithm, based on Unnikrishnan (2008).
Additional details on these algorithms can be found in the Appendix.

Again referring to the example in Fig. 1, consider the case where R = {B},
that is, B is the only information node. The set of node-states is shown
in Table 1, along with the optimal routing policy. Since node A is not an
information node, the driver will always choose to travel to node B, at which
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Table 1 Node states and
optimal policy for the
example network with
R = {B}

Node state Chosen arc

(A,∅) (A, B)

(B, (2, 2)) (B, C)

(B, (2, 6)) (B, C)

(B, (6, 2)) (B, D)

(B, (6, 6)) (B, C)

(C,∅) (C, E)

(D,∅) (D, E)

point the costs of (B, C) and (B, D) will be revealed. If either of these arcs is in
the “low” state (cost 2), it will be chosen by the driver, who will then continue
on to node E and experience a total trip cost of 6 units. The only way an arc
will be traversed in the “high”state (cost 6) is if both (B, C) and (B, D) have
high cost, which occurs with probability 1/4 and results in a total trip cost of 10
units. Thus, the expected cost of this policy is 6 × 3/4 + 10 × 1/4 = 7 units.

Note that the driver exhibits anticipatory behavior: the only reason for
traveling to node B is because information will be revealed at that point.
Without information and adaptive routing, the least expected-cost path is
simply to follow arc (A, E) directly to the destination, with expected cost 7.5;
this demonstrates that the driver’s route choice at the origin can be affected by
information provided at a later time.

Table 2 shows the set of node states and optimal policy if A was the only
information node, rather than B. In this case, the optimal strategy is to always
choose arc (A, E), with an expected cost of 7.5. Therefore, in this example, it
is better to provide information at node B rather than node A, because the
resulting optimal policy has lower expected cost.

Let the cost of providing information at node i be given by Ci, and assume
that a given budget B is available for this purpose. These costs can either be
monetary (as with a public agency seeking to install VMS signs) or abstract
(as with driving directions, where one can use unit cost for Ci and set B to
the maximum number of information nodes). Within these assumptions, we
consider three different information location problems. In each case, the goal
is to find a set of information nodes R∗ ∈ R optimizing a particular objective,
where R represents the set of feasible information node sets (that is, the
information node sets whose cost does not exceed the available budget).

Individual Information Provision (IIP) In this problem, we are only concerned
with optimizing a single traveler’s expected travel time, so only one
element of D is nonzero, and the cost functions cs

ij are constant, because an
atomic individual’s travel decision will not affect the costs they experience.

Table 2 Node states and
optimal policy for the
example network with
R = {A}

Node state Chosen arc

(A, (7, 2)) (A, E)

(A, (8, 2)) (A, E)

(B,∅) (B, C)

(C,∅) (C, E)

(D,∅) (D, E)
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Table 3 Overview of
problems IIP, UIP, and CIP

IIP UIP CIP

OD pairs One Many Many
Link costs Constant Constant Flow-dependent
Objective function E[π∗] TSTT TSTT
Key algorithm TD-OSP TD-OSP UER

This problem is appropriate for providing adaptive driving directions for
an individual with a private service.

Uncongested Information Provision (UIP) In this problem, we are concerned
with minimizing the total system travel time of a large number of travelers,
where congestion effects are ignored:

TSTT =
∑

(i, j)∈A

∑

s∈Sij

xs
ijc

s
ij

That is, D may take on general values, but the cost functions cs
ij are

still constant. This problem is appropriate for representing information
provision on large networks with minimal congestion, such as freight
routes in rural areas where weather closures may require re-routing.

Congested Information Provision (CIP) In this case, we are again concerned
with minimizing the total system travel time, but here congestion effects
must be considered, so the costs cs

ij will depend on the flows xs
ij. This is

appropriate for representing urban areas where incidents cause significant
reliability issues.

Clearly, IIP is a special case of UIP, and both of these are special cases of CIP.
Table 3 briefly summarizes the differences between these problems.

Finally, as a practical note, it is well-known that not all drivers will switch
routes in response to information received en route. For the purposes of this pa-
per, such users can be ignored as long as the number of such drivers is known,
by incorporating their presence into the cost functions as “background” traffic.
Behavioral models where switching occurs only under certain circumstances
(trip purpose, degree of time savings, freeway vs. arterial) are not considered
in the present work.

3 Network contraction

It is not trivial to evaluate a given set of information nodes R. The most
straightforward approach is to apply an online routing or equilibrium algo-
rithm to the network with information nodes R. For IIP, this consists of a
single application of TD-OSP to determine the expected travel cost from the
origin to the destination with R the information nodes. For UIP, because
TD-OSP calculates an “all-to-one” optimal policy tree, one can calculate the
total system travel time by applying TD-OSP n times, once for each possible
destination, multiplying the expected travel cost from each origin by the travel
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demand, and summing over all origins and destinations. For CIP, the UER
algorithm must be run to convergence.

This direct approach is undesirable for two reasons. First, applying these
algorithms requires some computation time, and any conceivable solution
algorithm requires evaluation of a large number of potential information node
sets. Second, the computation time required for each of these algorithms
grows with network size: TD-OSP requires O(n2mS log(nS)) time, where S =
maxij |Sij|, and UER2, which involves repeated solution of TD-OSP, exhibits
comparable growth in run time.

The good news is that a faster approach for evaluating information nodes is
available for IIP and UIP, allowing TD-OSP to be applied to a much smaller
network. For simplicity, we first describe this procedure for IIP, then show how
it is adapted for UIP.

Because drivers can only make a recourse decision at an information node,
their routes they travel are deterministic except at such nodes, simply because
they do not receive any information which would cause them to switch paths.
Furthermore, at information nodes, drivers only learn information about
adjacent arcs. Upon arriving at the downstream end of these arcs, they will
continue to follow a deterministic path until encountering another information
node or the destination.

This can be represented by constructing a contracted network G′(R) =
(N′(R), A′(R)), where the contracted node set N′(R) consists of the origin,
the destination, the information nodes R, and the nodes adjacent to infor-
mation nodes, and where the contracted arc set A′(R) connects the origin
to each information node and the destination, each information node to its
adjacent nodes, and every adjacent node to each information node and the
destination. Figure 2 shows a sample contracted network for two information
nodes (marked in grey). In this figure, solid lines represent arcs which also
exist in the original network G (“direct arcs”), while dashed lines represent
a deterministic path connecting its tail and head nodes in G (“path arcs”).
The only direct arcs are those connecting recourse nodes to their adjacent
nodes; all of the other contracted arcs represent paths in G. We denote the
set of direct and path arcs as A′

D(R) and A′
P(R), respectively. Note that

N′(R) contains at most 2 + |R| + ∑
i∈R |�(i)| nodes and A′(R) contains at most

(1 + ∑
i∈R |�(i)|)(|R| + 1) + ∑

i∈R |�(i)| arcs.

Fig. 2 Example contracted
network with |R| = 2

DestinationOrigin

Recourse Nodes (R)
Adjacent Nodes
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To demonstrate this concept using a larger network, Fig. 3 shows how a
contracted network is created on the well-known Sioux Falls network. The
black nodes denote the origin and the destination, while the grey nodes
indicate the information nodes. Of the two costs shown in the original network,
the lower cost occurs with probability 0.9, while the higher cost occurs with
probability 0.1.

Note that the only arcs in the contracted graph with uncertain costs are
those adjacent to information nodes, since these are the only locations where
an adaptive decision can be made. The remaining nodes are connected by
arcs with deterministic cost, representing the cost of the least expected-cost
path between these. (The justification for choosing these costs is given in
Theorem 1.) Although this network is only slightly smaller than the original
network, the contracted network would be nearly the same size regardless
of the number of nodes and arcs in the original graph, assuming the node
connectivity is comparable.

In particular, by choosing the path arcs to represent least expected-cost
paths between their tail and head nodes, and by setting the arc’s cost to the
expected cost of this path, the optimal policy π ′ on the contracted graph has
the same expected cost as the optimal policy π∗ on the original graph, as shown
below.

Theorem 1 E[π ′] = E[π∗]

Proof We first show that E[π ′] ≤ E[π∗]. Consider the following procedure
contract, applied to a node i where �i = {∅}: eliminate i from the graph, along
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Fig. 3 Sioux Falls network and a contracted graph for two information nodes
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Fig. 4 Potential conflict with
expanding policies on the
contracted graph, and
resolution procedure (a, b)

(a)

(b)

with all arcs adjacent to i. For each arc incident to i, replace that arc’s head
node with π∗(i, ∅), and add the expected cost of arc (i, π∗(i, ∅)) to the cost of
each of its states. Note that the cost of π∗ is unaffected by this procedure (in
fact, the policy itself is essentially unaffected, aside from the trivial removal
of node-state (i, ∅)). Returning to graph G, iteratively apply contract, each
time choosing a node i which is neither an information node, nor immediately
adjacent to an information node. Each step does not affect the cost of the
optimal policy, and the resulting graph is a subgraph of G′ (since clearly the
deterministic components of π∗ must represent least expected-cost paths),
implying E[π ′] ≤ E[π∗].

Similarly, we can show that E[π∗] ≤ E[π ′], which is enough to prove the
result. Since the arcs A′

P represent least expected-cost paths in G, a policy in
G with equal expected cost can be trivially constructed by expanding the policy
π ′ using these paths, unless there exists a node j ∈ N which is part of two such
shortest paths to different nodes k and l (see Fig. 4(a)). Thus, assume that
such a node exists.2 Let Lk and Ll be labels representing the expected travel
cost from k to the destination v; since arc costs are independent, these labels
do not depend on the path taken to reach these nodes. Since π ′ is optimal,
Lk ≤ Ll, because otherwise the path segment j − k could be replaced by j − l.
By the same argument, Ll ≤ Lk and thus Ll = Lk. Thus, when constructing a

2Essentially, at non-information nodes, a traveler following a policy in G must make the same
decision regardless of their past travel history, while a traveler following a path arc has an
additional piece of information—the tail and head nodes of that path. We must show that this
additional information cannot improve the expected cost of the optimal policy.
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policy in G from π ′, altering one of the expanded paths from a path arc to be
consistent with the expanded path from another (Fig. 4(b)) does not change
the expected cost of the policy. 	


The contracted graph is extremely useful for solving IIP and UIP because it
allows the value of a set of information nodes to be evaluated by applying
TD-OSP to a much smaller graph. In particular, note that the size of the
contracted graph does not depend on the size of the original graph. Since
|R| � n in most cases, this leads to an enormous reduction in the time needed
for evaluation. (Of course, the number of feasible sets of information nodes
still grows with network size.)

To evaluate a set of information nodes for UIP, one might imagine that a
contracted graph should be constructed for each OD pair in Z 2. However, a
more efficient approach is possible. Because TD-OSP is an “all-to-one” label
correcting algorithm, it suffices to construct a single contracted graph for each
destination, provided that every origin node is included as well; that is, taking
the union of all of the contracted graphs corresponding to a single destination.
The contracted graphs formed in this manner will contain at most 1 + |Z | +
|R| + ∑

i∈R |�(i)| nodes and (|Z | + ∑
i∈R |�(i)|)(|R| + 1) + ∑

i∈R |�(i)| arcs.
One might object that performing TD-OSP |Z | times to the slightly larger

destination-based networks is worse than |Z |2 applications on the smaller
single origin-destination networks, because TD-OSP grows faster than linearly
in network size. However, since the origin nodes have no reverse star, their
addition involves very little increase in the run time, certainly much less than
the worst-case bound. A better comparison is the number of node labels which
must be calculated; with the given graph sizes, using the destination-based
networks requires the calculation of roughly (|Z |2 − |Z |)(1 + ∑

i∈R |�(i)|)
fewer labels than the use of the single origin-destination networks, a savings
which is substantial in large networks where many network contractions need
to be performed.

One might also wonder why the nodes adjacent to information nodes are
retained in the contracted networks, because no information is received there
and a deterministic decision is made. By including these nodes, the cost of
the path arcs are obtained from a simple lookup from an all-pairs shortest
path computation performed upon initialization. If the adjacent nodes are
contracted, the path arcs can exist in multiple states, and costs must be cal-
culated for each state. This introduces additional computational requirements
which negate the savings from a slightly smaller network, and complicates the
implementation.

Unfortunately, this contraction procedure is not useful for CIP, because the
link costs are flow-dependent, implying that multiple paths will be used by each
OD pair in general, and thus generating the appropriate cost function for the
path arcs is difficult. Furthermore, the cost of a path arc can depend on the
flow on a separate arc, and equilibrium models with adaptive routing are not
yet available for networks with asymmetric cost functions.
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4 Solution methods

All three of the information location problems described above are difficult to
solve exactly, as IIP, UIP, and CIP are essentially a facility location or network
design problem, where the solution cost is determined by the travel cost
experienced by the driver(s). Such problems are notoriously difficult to solve
due to their nonlinearity and discrete nature, and enumerative techniques are
often required to find the exact optimal solution. It is not difficult to show that
IIP is NP-hard: consider the 0-1 knapsack problem maxx v · x among nK objects
such that w · x ≤ 1 and x ∈ {0, 1}nK . Construct a graph GK = (NK, AK) with
NK = {1, 2, . . . , nK, nK + 1} ∪ {1′, 2′, . . . , n′

K} and AK ={(1, 2), (2, 3), . . . , (nK,

nK + 1)} ∪ {(1, 1′), (2, 2′), . . . , (nK, n′
K)}∪ {(1′, 2), (2′, 3), . . . , (n′

K, nK + 1)} (see
Fig. 5). Each arc (i, i + 1) ∈ {(1, 2), (2, 3), . . . , (nK, nK + 1)} exists in one of two
states with equal probability; these states have cost −2vi and ∞, respectively.
All other arcs have cost zero deterministically, and define Ci = wi for each
node, along with B = 1. Consider solving IIP on GK: if a node i ∈ NK is an
information node, the optimal policy is clearly to follow (i, i + 1) if that arc
has cost −2vi, and to follow (i, i′) otherwise. For non-information nodes j, the
optimal policy is to always follow ( j, j′), and the expected cost of any such
policy is the negative of the knapsack objective when the objects corresponding
to information nodes are selected. As this knapsack problem is well-known to
be NP-hard, IIP must be NP-hard as well. Furthermore, as IIP is a special case
of UIP and CIP, the NP-hardness of these problems follows immediately.

Thus no efficient, exact solution algorithms can be provided for these
problems at present. Still, one way to determine the optimal set R∗ is to simply
calculate the total travel time resulting from each set in R being chosen as
information nodes, and identifying the best such set. This is clearly inefficient,
but network contraction makes enumeration computationally feasible for
solving IIP or UIP on small- to medium-sized networks. That is, the contracted
graph corresponding to each feasible set of information nodes is constructed,
TD-OSP applied for each destination,

If |R| ≤ Rmax for all feasible information sets R, then O(nRmax) sets must
be examined. Although this growth is polynomial in network size (assuming
fixed Rmax), a large planning network (such as those used to model Chicago, IL
or Philadelphia, PA) can easily include over 10,000 nodes, and locating even
three information nodes via enumeration would require more than a trillion

Fig. 5 Reduction from the 0-1 knapsack problem
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iterations of network contraction and TD-OSP. Thus, it is still necessary to
develop heuristic solution procedures.

Many heuristics employ the notion of a neighborhood to specify which
feasible solutions are considered “adjacent” in a search procedure. In this
paper, the neighborhood N (R) of a set of information nodes R is defined
as the set of feasible information node sets which differ from R by exactly
one node. Returning to the example in Fig. 3, where R = {5, 9}, N (R) is
the union of the sets, {5}, {9}, {(5, i) : i ∈ N − {5, 9}}, {(i, 9) : i ∈ N − {5, 9}},
and {(5, 9, i) : i ∈ N − {5, 9}}, intersected with R. In general this set is of size
O(nRmax).

This suggests a local search heuristic, where one starts with an initial feasible
set of information nodes, and considers each neighboring set. If any of them
has a lesser cost, the one with minimal cost is chosen as the new incumbent
solution, and the search repeated with the new neighborhood. If none has a
lower cost, the current incumbent is declared a local optimum and the search
halted. An initial feasible solution must be generated in some way; three
approaches considered in this paper are:

1. Labels representing the expected cost from each origin to each destination
are calculated for the “full-information” and “no information” cases (that
is, where adaptive routing is allowed at each node, and where drivers must
choose their route a priori using expected costs). The difference between
these is defined as the benefit of information at node for that origin-
destination pair; the total benefit is calculated by multiplying the benefit to
each OD pair by its demand value, and summing. Proceeding in a greedy
manner, construct the initial set R by repeatedly adding the nodes with the
highest benefit-cost ratio, until doing so is no longer feasible.

2. Instead of choosing all of the nodes with highest benefit-cost ratio at
the same time, proceed iteratively: after selecting the node i with the
highest total benefit, re-calculate the “no information” labels by allowing
information at node i along with the updated benefits, select the node with
the highest total benefit which can feasibly be added to the initial set, and
so on.

3. A purely random selection of nodes can be made for the initial solution.

Local search with this neighborhood definition is not guaranteed to find the
optimal solution to IIP, as shown by the network in Fig. 6. The only nodes
where information can provide any benefit to travelers are nodes 2, 3, 5, and
6. By inspection, the optimal set is R = {2, 3}, with an expected travel cost of
48. However, if the incumbent set is R = {5, 6} (as would occur as the initial
set under the first two decision rules), none of the neighboring information
sets ({2, 5},{2, 6},{3, 5},{3, 6}) reduce the expected cost below its current value
of 51. Thus, with this neighborhood definition, there can exist sets which are
locally optimal, but not globally so.

Finally, one can apply a purely greedy approach: consider all feasible
information sets of size one, and select the set R1 providing the greatest
reduction in the objective function per unit of cost, relative to the case where



S. D. Boyles, S. T. Waller

Fig. 6 Network demonstrating how local search and the greedy heuristics can fail

R = ∅. Next, consider all nodes which can be feasibly be added to R1, and
choose the set R2 with providing the greatest objective function per unit of
cost, relative to R1. This procedure is repeated until no additional information
nodes can feasibly be added. Thus, each iteration involves examining O(n) new
solutions. As with local search, this procedure need not produce the optimal
solution, even when all nodes have equal cost, as seen by the network in
Fig. 6. If information can only be provided at one node, the best location is
node 6, reducing the optimal expected travel time from 96 to 52. Given that
information is provided at node 6, the best node to choose second is node 5,
reducing travel cost to 51; however, the optimal set of size two is {2, 3}, with
expected cost 48.

From a practical standpoint, significant gains in computation time can often
be obtained by judicious choice of the feasible sets R, as influenced through
the node costs Ci. For instance, there is no benefit to providing information
at a node with only one exiting arc, because drivers at this node must choose
the same arc regardless of any information received, and because any such
information is only valid locally. Such nodes commonly exist where freeway
onramps merge, and at certain intersections involving one-way streets or turn
restrictions. In the Chicago Regional network (described more fully in the
following section), roughly five percent of the nodes can be excluded by this
criterion. Since the number of feasible sets can grow exponentially with respect
to the network size this saving can be significant: if R = N3, for instance, a
time savings of nearly fifteen percent can be seen in an enumerative search.
Separately, one may also be able to restrict attention a priori to a small subset
of nodes, such as those adjoining freeway links and major arterials, leading to
an even greater reduction in the size of the feasible set.

One should also note that all of these methods are highly parallelizable,
which will decrease computation times substantially if available.

5 Demonstration

These algorithms were tested on four standard transportation networks of
varying sizes, obtained from Bar-Gera (2009). Table 4 shows properties of
these networks, as well as the problems which will be studied for each network
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Table 4 Characteristics of the test networks

Sioux Falls Anaheim Barcelona Chicago regional

n 24 416 1020 12,982
m 76 914 2522 39,018
z 24 38 110 1790
SP time (s) 0.00 1.14 17.3 34500
Problems IIP,UIP,CIP IIP,UIP,CIP IIP,UIP IIP

and the time required to find the shortest paths between each pair of nodes
using the Floyd-Warshall algorithm. While IIP can be studied on all four
networks, memory and time considerations preclude analyzing UIP on the
Chicago Regional network or analyzing CIP on the Barcelona or Chicago
Regional networks.

Each of the solution methods described in the previous section is imple-
mented and tested. Local search is applied using each of the three rules for
generating an initial information set; when the initial configuration is random,
the search is repeated five times and the best solution chosen. Additionally,
for comparison with a standard metaheuristic, simulated annealing is used
to generate an information set, using the same neighborhood definition as
the local search. The cooling schedule and other parameters are determined
separately for each test network, adapting the procedure in Chiang and Russell
(1996) to ensure that the initial probability of accepting a disimproving move
is five percent, and that the number of iterations between cooling is equal to
half of the neighborhood size. Computation times are reported for a 3.4 GHz
Pentium 4 machine using Windows XP with 2 GB RAM, and all algorithms
are terminated after one hour of running time.

For each test case, the cost of providing information at each node is one cost
unit, and the cases B = 2 and B = 3 are considered. That is, two feasible sets
R are considered: R2 (all sets of two information nodes) and R3 (all sets of
three information nodes). For IIP and UIP, arc costs are assumed to equal the
free-flow travel time with probability 0.9, and three times the free-flow travel
time with probability 0.1; for CIP, the free-flow travel times vary in the same
manner, with the capacity constant; the well-known BPR relation is used to
relate link flows to travel times, with shape parameters α = 0.15 and β = 4.
Travel demand for UIP and CIP is the same as the standard network files; for
IIP, the origin and destination are the two nodes farthest apart, in terms of
shortest free-flow travel time.

Results from solving IIP on the four networks are shown in Table 5, showing
the sets of information nodes found by the algorithms, the computation
time needed to find these (in seconds), and the amount of benefits provided
by information, relative to the benefits attainable by providing information
everywhere. (That is, the difference between the expected travel cost with
that information and the “no-information” expected travel cost, divided by
the difference between the “full-information” and “no-information” expected
travel costs.) The time required for finding the shortest path between each
pair of nodes is reported in Table 4 and is not included in the computation
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Table 5 Individual information provision (IIP) on test networks

|R| = 2 |R| = 3
Nodes Time (s) Benefit Nodes Time (s) Benefit

(a) Sioux Falls
Enumeration 3,12 0.02 56.5% 3,11,12 0.32 72.2%
Local search 1 3,12 0.01 56.5% 3,11,12 0.02 72.2%
Local search 2 3,12 0.01 56.5% 3,11,12 0.02 72.2%
Local search 3 1,12 0.05 50.5% 1,11,12 0.10 69.3%
Greedy 3,12 0.00 56.5% 1,11,12 0.00 69.3%
Simulated annealing 3,12 0.01 56.5% 3,11,12 0.32 72.2%

(b) Anaheim
Enumeration 404,405 4.41 42.7% 305,404,405 957.93 56.0%
Local search 1 404,405 0.35 42.7% 305,404,405 0.69 56.0%
Local search 2 404,405 0.52 42.7% 305,404,405 0.84 56.0%
Local search 3 180,404 0.28 22.9% 136,371,404 0.83 22.9%
Greedy 404,405 0.04 42.7% 305,404,405 0.21 56.0%
Simulated annealing 404,405 0.20 42.7% 201,404,405 0.25 42.7%

(c) Barcelona
Enumeration 249,1009 116 47.8% 1,351,783 3600a 47.8%
Local search 1 249,1009 2.95 47.8% 249,306,1009 5.22 57.8%
Local search 2 249,1009 5.23 47.8% 249,306,1009 9.62 57.8%
Local search 3 550,1009 12.8 33.6% 909,921,1009 37.6 33.6%
Greedy 249,1009 0.27 47.8% 249,306,1009 0.57 57.8%
Simulated annealing 963,1009 1.97 41.5% 249,826,1009 12.3 51.2%

(d) Chicago regional
Enumeration 2184,9883 3600b 18.0% 1,2184,9883 3600c 18.0%
Local search 1 9446,9447 29.5 19.9% 2755,9476,12299 35.0 0.00%
Local search 2 9446,9447 59.0 19.9% 2755,9476,12299 94.4 0.00%
Local search 3 7051,9883 15.1 14.9% 1896,3358,9883 60.5 14.9%
Greedy 6826,9883 3.04 19.9% 6826,8625,9883 6.57 23.5%
Simulated annealing 6822,9883 31.5 18.5% 2184,8625,9883 34.8 21.6%

a1.56% of feasible space explored in time limit
b66.6% of feasible space explored in time limit
c0.01% of feasible space explored in time limit

times recorded here, in order to more clearly differentiate the impact of the
algorithms which have a common initialization.

Several results are apparent. First and most notably, the greedy heuristic al-
ways found the best known solution, in substantially less time; this suggests that
pitfalls such as those in Fig. 6 may be relatively rare in transportation networks,
and that the sets of information nodes tend to “nest” in that optimal sets of
one size are subsets of optimal sets of a larger size. This may be reasonable, in
that the best places to locate information in large networks are geographically
disparate, and providing information at one node may only have a limited
impact on the benefits of providing information at another, distant node. On
the other hand, he frequent failure of Local Search 3 (initialized randomly)
to find the optimal information node sets, even with five restarts, suggests that
local search quite often leads to non-globally optimal solutions if not initialized
carefully.

Interestingly, the first two rules for determining the initial candidate set for a
local search always produced identical sets of information nodes, and found the
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global optimum solutions, although rule one requires less computation time.
This occurs because rule one only requires one application of TD-OSP on
the whole network, while rule two requires one application per information
node; while the benefits of iteratively updating cost labels are not apparent in
these networks. Unsurprisingly, enumeration quickly grows intractable; at the
observed pace for the first hour of computation, identifying the optimal set of
three information nodes on the Chicago Regional network would require more
than a year.

Similar results are seen when solving UIP on the three smallest networks
(Table 6). Note the substantial increase in computation time, since optimal
policies must be found for each destination in the network, not just one.
The comments which applied to IIP are mainly applicable here as well.
Although the first two decision rules for initializing the local search seem to
produce different results for locating three information nodes in the Barcelona
network, this is an artifact introduced by the one-hour time limit and the
greater time needed to initialize rule two. Given more time to proceed, Local
Search 2 would have followed the same search trajectory as Local Search 1 in
this network.

Table 7 shows the results from solving CIP on the Anaheim and Sioux
Falls networks. Interestingly, for the Anaheim network, using a random seed
for the local search yielded a better two-information node solution than was

Table 6 Uncongested information provision (UIP) on test networks

|R| = 2 |R| = 3
Nodes Time (s) Benefit Nodes Time (s) Benefit

(a) Sioux Falls
Enumeration 10,16 1.41 29.0% 10,15,16 18.57 38.3%
Local search 1 10,16 0.87 29.0% 10,15,16 3.31 38.3%
Local search 2 10,16 0.97 29.0% 10,15,16 3.60 38.3%
Local search 3 10,16 2.27 29.0% 10,15,16 5.71 38.3%
Greedy 10,16 0.20 29.0% 6,10,14 0.48 26.8%
Simulated annealing 10,16 0.75 29.0% 10,15,16 3.66 38.3%

(b) Anaheim
Enumeration 91,232 648.3 18.8% 2,91,232 3600a 25.6%
Local search 1 91,232 20.8 18.8% 91,232,236 57.8 25.6%
Local search 2 91,232 24.0 18.8% 91,232,236 65.7 25.6%
Local search 3 227,232 55.9 12.5% 91,95,232 129.5 19.2%
Greedy 91,232 4.4 18.8% 91,232,236 8.1 25.6%
Simulated annealing 91,232 9.2 18.8% 91,232,236 27.6 25.6%

(c) Barcelona
Enumeration 1,766 3600b 5.06% 1,8,766 3600c 5.14%
Local search 1 555,766 1733 11.7% 555,673,766 3600 20.6%
Local search 2 555,766 2425 11.7% 72,766,887 3600 11.8%
Local search 3 306,766 3000 6.32% 210,366,762 3600 8.86%
Greedy 555,766 303 11.7% 555,673,766 623 20.6%
Simulated annealing 682,762 888 9.24% 555,676,816 1610 15.3%

a3.97% of feasible space explored in time limit
b3.90% of feasible space explored in time limit
c0.01% of feasible space explored in time limit
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Table 7 Congested information provision (CIP) on test networks

|R| = 2 |R| = 3
Nodes Time (s) Benefit Nodes Time (s) Benefit

(a) Sioux Falls
Enumeration 10,15 40.4 35.4% 10,11,15 310 45.1%
Local search 1 10,15 19.0 35.4% 10,11,15 55.8 45.1%
Local search 2 10,15 13.0 35.4% 10,11,15 31.6 45.1%
Local search 3 10,15 64.3 35.4% 10,15,24 105 43.3%
Greedy 10,15 6.0 35.4% 10,11,15 9.5 45.1%
Simulated annealing 10,15 23.8 35.4% 10,11,15 47.0 45.1%

(b) Anaheim
Enumeration 21,319 3600a 11.0% 1,21,319 3600b 11.0%
Local search 1 319,355 463 13.6% 319,355,407 1030 17.0%
Local search 2 319,355 467 13.6% 319,355,407 1033 17.0%
Local search 3 388,389 1331 15.8% 86,302,319 2403 11.0%
Greedy 319,355 147 13.6% 319,355,407 236 17.0%
Simulated annealing 319,355 169 13.6% 268,319,355 554 11.0%

a20.9% of feasible space explored in time limit
b0.15% of feasible space explored in time limit

found by any of the other heuristics, the only time that this heuristic found
a better solution than the others. Comparing UIP and CIP, one sees the
benefits attainable from only two or three information nodes are higher in
the Sioux Falls network when congestion effects are present, but lower in the
Anaheim network. This may be due to differences in the congestion level on
these networks: the average volume-to-capacity ratios for the no-information
equilibrium assignment in these networks are 1.48 for Sioux Falls, and
0.32 for Anaheim. Again note the significant increase in computation time
needed to solve this problem, as evaluating any feasible solution involves an
equilibration, and no network contraction is available to speed the process.

In all cases, note that a sizable portion of the total possible benefits from
information provision can be achieved even when only providing information
at two or three nodes.

6 Conclusion

This paper addressed the problem of choosing the optimal locations to provide
real-time traffic information, in three different forms: routing of an individual
vehicle, routing of multiple vehicles in an uncongested system, and multiple-
vehicle equilibrium in a congested network. As even the simplest of these
problems is NP-hard, heuristics were developed to solve each of these prob-
lems. For the two simplest cases, a network contraction procedure allows
rapid evaluation of candidate solutions. These heuristics were then tested in
networks of varying sizes, showing that a substantial portion of the benefits
of information are available even when providing information only at two or
three nodes.
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Although providing initial insight into these problems, there are several
valuable and interesting extensions of this work which can enhance the realism
of these models. Generalizing the information beyond a single step is possible
within this framework, although the complexity of the algorithms presented
here grows substantially, and a more efficient way to handle general informa-
tion would be welcome. Likewise, relaxing independence of arc states could
enhance the realism of our model. Perhaps the most significant assumption
made here is the static nature of congestion; although a dynamic version of
these problems would seem to require greatly more computation time, such a
model could model reliability and congestion with much greater fidelity.

Acknowledgement The authors would like to thank Nezamuddin for useful comments made on
an earlier draft of this paper, and for several fruitful discussions regarding heuristic approaches.

Appendix

Algorithms and Pseudocode

This appendix provides a brief overview of the TD-OSP and UER2 algorithms
used in this paper. TD-OSP is taken directly from Waller and Ziliaskopoulos
(2002), and determines the expected cost of an optimal adaptive routing policy
through a label-correcting technique involving a scan-eligible list SEL. The
presentation of the algorithm below is adapted to the notation in this paper,
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and to allow both information nodes and non-information nodes. Input to TD-
OSP is a destination v, and the output is the optimal policy π∗ with respect to
the (fixed) arc costs by state, provided as input.

The version shown here is used for CIP, when the entire routing policy
is needed. For UIP and IIP, all that is needed is the expected cost of the
optimal routing policy, a variation for which Waller and Ziliaskopoulos (2002)
provides a pseudopolynomial algorithm involving an inner reduction step of
the expected cost vector.

The UER2 algorithm is used to evaluate feasible solutions for the CIP
problem, finding an equilibrium among policies rather than fixed paths as in
the traditional deterministic user equilibrium problem. The problem setting
in this paper matches Model B of Unnikrishnan and Waller (2009), who
shows that the equilibrium state-dependent link flow matrix X = [xs

ij] solves
the optimization problem

min
∑

(i, j)∈A

∑

s∈Sij

∫ xs
ij

0
cs

ij(x)dx

where the xs
ij are generated by a feasible policy assignment with respect to the

demand matrix D. Unnikrishnan (2008) uses an incidence matrix to map each
policy to the proportion of its flow which uses arc (i, j) in state s, and then
applies the Frank-Wolfe algorithm to solve this program (Algorithm 2).

In this paper, we adopt a different approach for mapping policies to arc
flows, applying a “policy loading” algorithm (Algorithm 3) which assigns flow
from all origins to a given destination v in each stage. Each node i is associated
with a label T representing the number of vehicles at node i which have yet to
reach the destination. Initially, Ti is equal to the demand from i to v. Nodes
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with positive Ti are scanned, and these vehicles assigned to adjacent nodes
according to the routing policy and the probability of each message being
received, thus increasing T for the adjacent nodes, and reducing Ti to zero.
Since vehicles typically move from nodes with higher expected cost labels L to
nodes with lower expected cost labels, a binary heap is used to keep track of
the nodes with positive T, identifying the highest-cost node at each iteration.
This alteration we name UER2.

The prime advantages of UER2 are (i) the ability to handle networks with
cycles, through an iterative approach and a tolerance Tmin � ||D|| to terminate
long cycles; and (ii) a substantial (approximately O(m)) reduction in the com-
putation time needed, since all origins corresponding to the same destination
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are processed simultaneously and redundant flow shifts are eliminated. The
implications of this change, and proofs of convergence and correctness, are
discussed more fully in Boyles (2009) and Boyles and Waller (2009).
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